PRELIMINARY ASSESSMENT OF ENVIRONMENTAL IMPACTS RELATED TO SPRAYING OF AGENT ORANGE HERBICIDE DURING THE VIET NAM WAR

VOLUME 2: APPENDICES

Hatfield Consultants Ltd.

201-1571 Bellevue Avenue West Vancouver, BC Canada V7V 1A6 Tel: (604) 926.3261 Fax: (604) 926.5389 Email: hcl@hatfieldgroup.com Website: www.hatfieldgroup.com National Committee For Investigation of the Consequences of the Chemicals Used During the Viet Nam War (10-80 Committee)

 Tôn Thất Tùng Street
 Tel:
 84.48.522.479

 Dong Da
 Fax:
 84.48.523.514

 Ha Noi
 Viet Nam

10-80 Committee

October 1998

Suggested Citation for this Report:

Hatfield Consultants and 10-80 Committee. 1998. Preliminary assessment of environmental impacts related to spraying of Agent Orange herbicide during the Viet Nam war. Volume 1: Report; Volume 2: Appendices. Hatfield Consultants Ltd., West Vancouver, BC, Canada; 10-80 Committee, Ha Noi, Viet Nam.

Front Cover Photos

- Top: C-123 applying herbicide over upland forest in Viet Nam. Photo courtesy of Dr. E.W. Pfeiffer, Missoula, Montana.
- Lower Left: Forested area near Aluoi Valley, untouched by herbicide (Hatfield Consultants Ltd. photo, January 1995).
- Lower Right: Once-forested area near Aluoi Valley that received herbicide during the Viet Nam War

(Hatfield Consultants Ltd. photo, January 1995).

Back Cover

• Radarsat image of Aluoi Valley with herbicide spray lines superimposed (cf. Plate 5.1).

ι. 1

LIST OF APPENDICES

VOLUME 2

Appendix A1 Description of the Aluoi Valley Ecosystem

- Appendix A2.1 Spread Sheet Summaries and Congener Profile Graphics of Viet Nam Dioxin Data, 1996 and 1997, Incorporating Analytical Data Appearing in Appendices A2.2, A2.3 and A2.4
 - Statistics on Human Participants in the Collection of Blood for Dioxin Analyses, A So (Aluoi Valley), Viet Nam, 1997
 - A2.2 Axys Analytical Report to Hatfield Consultants Ltd. 1997 Analytical Data on 1996 Viet Nam Samples
 - A2.3 Axys Analytical Report to Hatfield Consultants Ltd. 1998 Analytical Data on 1997 Viet Nam Samples
 - Addendum Analytical Data on 1997 PCB/Pesticide Analyses - Reports and Batch Summary Sheets (See Appendix A2.2 for Analytical Protocols)
 - A2.4 Environmental Technology Centre (ETC) (Environment Canada) Report to Hatfield Consultants Ltd. February 1998 Analytical Data on 1997 Viet Nam Samples
 - A2.5 Tabulation of Dioxin Analyses Summarized from Specific Reference Materials (Provided Courtesy of Axys Analytical Services, Sydney, British Columbia, Canada)

റല്രി

Appendix A3 Dioxins and Furans in the Environment: Sources, Levels, Fate and Toxicity

Appendix A1

Description of the Aluoi Valley Ecosystem

TABLE OF CONTENTS

Page
Introduction1
Physical Description of Aluoi Valley1
Geography and Geomorphology1
Geology and Soils
Climate10
Ecosystem of the Aluoi Valley12
Vegetation and Forests12
Aquatic Ecosystem and Fish27
Amphibians and Reptiles
Birds
Mammals
Socio-Economic Conditions in Aluoi Valley
Human Population
Public Health
Economic Activities
Aquaculture43
References

LIST OF TABLES

Table A1.1	Land area according to slope and altitude classes of Aluoi District mapped at 1:50,0000 (data from FIPI 1995)	5
Table A1.2	The four major soil units, and 12 sub-units, from 1:50,000 soil mapping in Aluoi District (data from FIPI 1995)	7
Table A1.3	Monthly mean temperature and total rainfall data for Aluoi District from 1991 to 1994 (data from General Department of Hydro-Meteorology [GDHM])	10
Table A1.4	Meteorological data for Aluoi District, Thua Thien Hue Province for the early 1990's (data from GDHM)	11
Table A1.5	Current (1990 – 1995) land cover data for Aluoi District (data from FIPI 1995)	14
Table A1.6	Post-war (1975) planned land use for Aluoi District (data from FIPI 1995)	16
Table A1.7	Background of planned land use types as listed in Table A1.6 (data from FIPI 1995)	17
Table A1.8	List of forest in the Aluoi District (data from FIPI 1995)	18
Table A1.9	General food chain of the Aluoi freshwater ecosystem	27
Table A1.10	Fish species collected from the A Sap River near Son Thuy village, Aluoi District (collected by Dr. Duc in 1982 & June, 1995 and by T. Boivin and Dr. Levy April 1995)	28
Table A1.11	Fish species recorded in Hong Van Village, Aluoi District (collected by Dr. Duc, June 1995)	29
Table A1.12	Fish species collected from the Bo River, Hong Ha Village, Aluoi District (collected by Dr. Duc, June 1995)	30
Table A1.13	Fish species in the ponds of the Aluoi Valley (collected by Dr. Duc, June 1995)	31
Table A1.14	Amphibians and reptiles of Aluoi Valley (collected by Dr. Duc, June 1995)	32
Table A1.15	Birds of Aluoi Valley (collected by Dr. Duc, June 1995)	33

Table A1.16	Mammals of Aluoi Valley according to three surveys from 1952 to 1995 (data courtesy of FIPI)	5
Table A1.17	Village populations, main cropland uses and ethnic minority representations (collected by Mr. Hoang from Peoples' Committee of Aluoi Valley [April 1995])	7
Table A1.18	Staffing at the hospital and clinics of Aluoi District (data from the Vice Director of the District Health Centre)	9
Table A1.19	Serious diseases of in-patients in Aluoi District in 1994	9
Table A1.20	Number of cases of malaria in 1994 in villages of Aluoi District (data from Thua Thien Hue Province Malaria Department)40	0
Table A1.21	Numbers of persons per village in Aluoi District suffering from thyroid problems in 1994 (data from District health clinics)4	1
Table A1.22	Summary of agricultural production in Aluoi Valley in 199442	2
Table A1.23	Livestock raised in Aluoi District4	3
Table A1.24	Fish species currently used in aquaculture in Aluoi District (data from FIPI 1995)44	4

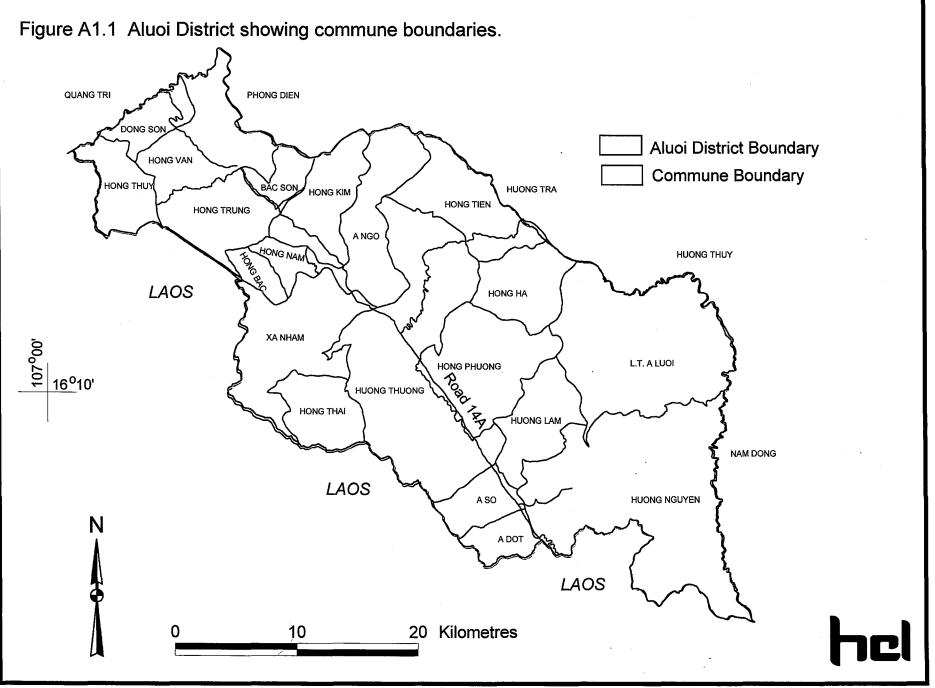
LIST OF FIGURES

Figure A1.1	Aluoi District showing villages and commune boundaries2
Figure A1.2	Topographic (elevation map) of Aluoi District (data from FIPI 1995)3
Figure A1.3	Main roads and rivers of Aluoi District (data from FIPI 1995)4
Figure A1.4	Soil map of Aluoi District (data from FIPI 1995)6
Figure A1.5	Current (1991) land use map of Aluoi District (data from FIPI 1995)13
Figure A1.6	Planned land use for Aluoi District (data from FIPI 1995)17

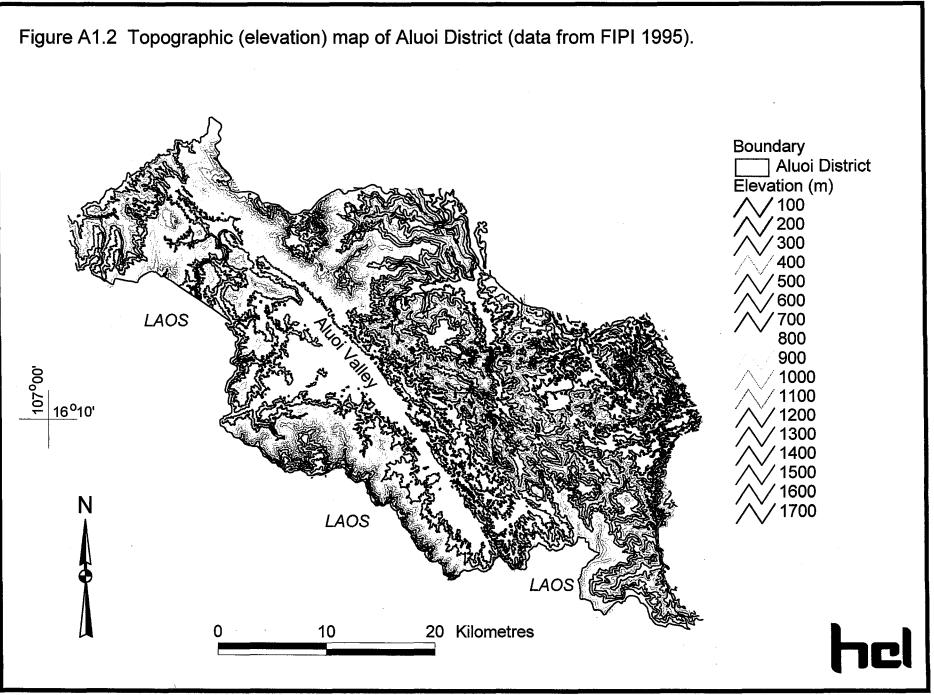
APPENDIX A1 DESCRIPTION OF THE ALUOI VALLEY ECOSYSTEM

INTRODUCTION

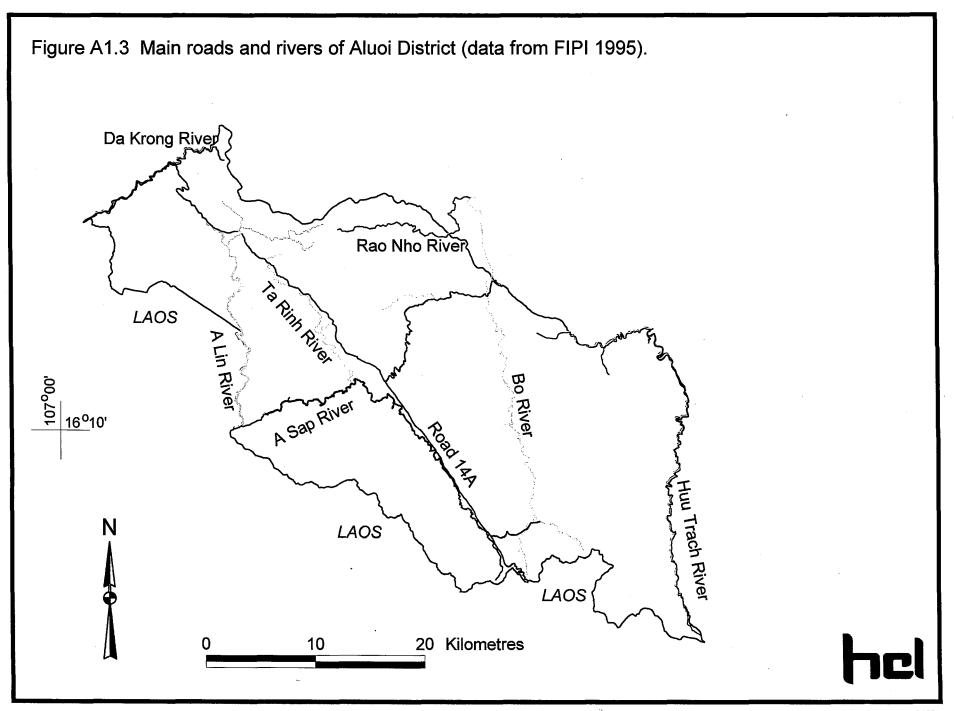
The following Appendix includes a summary of data collected in Aluoi District between 1994 and 1996. The purpose of this Appendix is to provide background data on environmental setting in the study area and a context for the environmental sampling program. Data were collected through interviews and discussions with local Vietnamese agencies, and includes information from a variety of published and unpublished sources. Most of the data were obtained by our Vietnamese collaborating scientists, and were translated into English by our team.


PHYSICAL DESCRIPTION OF ALUOI VALLEY

Geography and Geomorphology

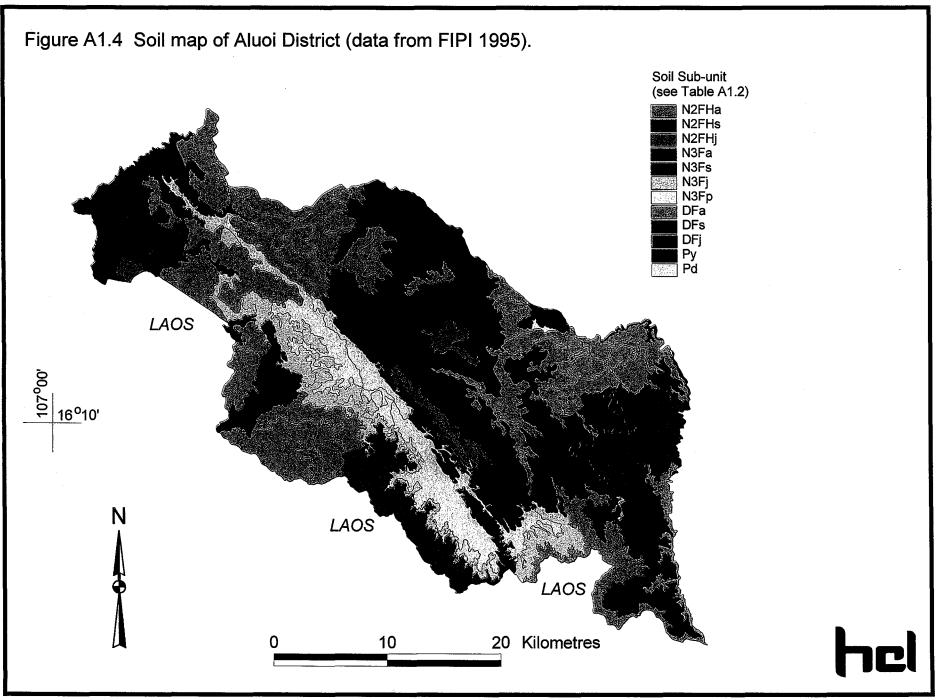

The Aluoi Valley is situated in Aluoi District approximately 65 km southwest of the city of Hue along the western side of Thua Thien Hue province in central Viet Nam (Figure A1.1). This narrow valley borders Laos to the west and was a major supply route along the Ho Chi Minh Trail from northern to southern Viet Nam during the war. The valley was of great strategic importance to the northern Vietnamese army moving into southern Viet Nam; considerable American efforts were spent to limit the flow of personnel and materiel through this region. To limit the ability of northern troops to move under cover, the Aluoi Valley was heavily bombed and sprayed with herbicides, between 1965 and 1970.

The Aluoi District covers 116,642 ha. Its main feature is the Aluoi Valley, which is approximately 30 km long, 3 km wide and surrounded by mountains ranging in height from 700 m to more than 1,000 m. The district's topography is mountainous; the Aluoi Valley is visible at ~600 m elevation (Figure A1.2). It is orientated from northwest to southeast in the district's western region. Figure A1.3 shows the district's main road (Highway [or Route] 14A) and rivers.


Table A1.1 summarizes slope and altitude data for Aluoi District. The average elevation is 500 to 600 m and most of the land has greater than 15° slope (source: Forest Inventory & Planning Institute [FIPI], Hue).

VN614: FIG2_NEW5.APR

VN614: CONTOUR1_NEW3.APR


Table A1.1Land area according to slope and altitude classes of Aluoi District
mapped at 1:50,000 (data from FIPI 1995).

9999-111-2009 - 112-2009-2009-2009-2009-2009-2009-2009-2	Are	a (ha) and % o	f total area acco	ording to slope	class inclination	n (°)
	1	2	3	4	5	
Altitude (m)	0°-7°	8°-15°	16°-25°	26°-35°	>35°	Total
701 to 1,800	-	644 (0.55%)	5,640 (4.83%)	6,800 (5.83%)	23,278 (19.96%)	36,363 (31.17%)
300 to 700	7,846 (6.73%)	5,400 (4.63%)	23,292 (19.97%)	15,4449 (13.24%)	8,501 (7.29%)	60,488 (51.86%)
<300	1,598 (1.37%)	4,020 (3.45%)	4,230 (3.63%)	4,200 (3.601%)	5,744 (4.92%)	19,792 (16.97%)
Total	9,444 (8.10%)	10,064 (8.63%)	33,162 (28.43%)	26,449 (22.67%)	37,523 (32.17%)	116,642 (100%)
Class 2 slope: 644 ha (0. Class 3 slope: 5,640 ha (Class 4 slope: 6,800 ha Class 5 slope: 23,278 ha Low mountains (elevation 30 Class 1 slope: 7,846 ha (Class 2 slope: 5,400 ha (Class 3 slope: 23,292 ha Class 3 slope: 15,449 ha Class 5 slope: 8,501 ha (Hills (elevation < 300 m) cov Class 1 slope: 1,598 ha (Class 2 slope: 4,020 ha (Class 3 slope: 4,230 ha (Class 4 slope: 4,200 ha (Class 5 slope: 5,744 ha (4.83%) Dong (5.83%) North (19.96%) No 00 to 700 m) (6.73%) Dispe 4.63%) Areas (19.97%) dis (13.24%) No 7.29%) South ering 19,792 1.37%) Along 3.45%) East 3.63%) East 3.60%) North	Ngai mounta n West area; orth West area Covering 60,4 ersed through beside Aluo persed through th and Centra and South E ha (16.97% of streams to the along the Hun and Hun Trac East and Ea	ain, North Wes and a; 188 ha (51.86 hout; i Valley; ghout; ral mountains East mountains f the area) of he East; u Trach River; ch, Rao Nai R st, along the I	% of the area ; and is; f which: ; ivers; Rao Nai, and		ivers; and

Geology/Soils

Table A1.2 contains a summary of the major soil units and sub-units (classification by FIPI 1995) found in Aluoi District; Figure A1.4 provides an illustration of the distribution of these units. Soil types of the valley are dominated by Feralit soils on old silts (N_3 Fp) and clay rock (N_3 Fj).

CIDA614/Book/AppendixA1

VN614: SOIL1_NEW4.APR

Table A1.2The four major soil units, and 12 sub-units, from 1:50,000 soil mapping in
Aluoi District (data from FIPI 1995).

Characte	eristics of majo	r soil units	Characteristics of soil sub-units			
Description	Soil/area (ha)/ % of total area	Distribution (topography / elevation (m) / location)	Soil sub-unit symbol/ area (ha) / % of total area	Soil Characteristics (colour / depth (cm) / texture / location)		
Humus feralit soil on mountains	N ₂ FH 36,362 ha 31.17%	Steep slopes 701 to 1,800 m concentrated to the N and NW regions	N_2FHa 27,393 ha 23.48% N_2FHs 1,819 ha 1.56% N_2FHj 7,150 ha 6.13%	Humus soil on magma (acid) rock colour : gray-yellow depth: 50 to 100 cm texture: loam sand-sand loam location: N & NW Humus soil on clay rock colour: red-yellow colour depth: 70 to 100 cm texture: heavy loam-clay location: E & SE Humus soil on deformed rock (almost gnai, ortognai) colour: red-yellow depth: 70 to 100 cm texture: sand loam and heavy loam location: central and SW		

Characte	eristics of majo	r soil units	Charact	eristics of soil sub-units
Description	Soil/area (ha)/ % of total area	Distribution (topography / elevation (m) / location)	Soil sub-unit symbol/ Area (ha) / % of total area	Soil Characteristics (colour / depth (cm) / texture / location)
Feralit Soil on low mountains	N ₃ F 60,488 ha 51.86%	steep slopes 300 to 700 m concentrated in the centre and perimeter of Aluoi Valley	N₃Fa 25,531 ha 21.89%	Feralit soil on magma (acid) rock (granite) colour: gray yellow depth: 50 to 100 cm texture: loam sand-sand loam location: NE region.
			N₃Fs 16,796 ha 14.40%	Feralit soil on clay rock colour: red-yellow depth: >100 cm texture: heavy loam and loam and clay location: central region
			N₃Fj 7,532 ha 6.46%	Feralit soil on clay rock colour: red-yellow depth: >100 cm texture: heavy loam and loam and clay location: SW region
			N₃Fp 10,629 ha 9.11%	Feralit soil on old alluvials colour: brown-gray depth: 50 to >100cm texture: Sand loam and loam-sand location: throughout the valley

Charac	teristics of majo	Charact	Characteristics of soil sub-units			
Description	Soil/area (ha)/ % of total area	Distribution (topography / elevation (m) / location)	Soil sub-unit symbol/ Area (ha) / % of total area	Soil Characteristics (colour / depth (cm) / texture / location)		
Feralit soil on hills	DF 18,194 ha 15.60%	Steep slopes <300 m throughout the valley and along rivers to the East	Dfa 12,060 ha 10.34% DFs 1,801ha 1.54% DFj	Feralit soil on acidic rock colour: yellow-red depth: 50 to 100 cm texture: Sand-loam to loam sand location: NE region Feralit soil on clay rock colour: red-yellow depth: >100 cm texture: Loam-clay to clay location: NE along the Rao Nai River Feralit soil on deformed rock		
			4,333 ha 3.72%	colour: red-yellow to yellow-red depth: >100 cm texture: loam-clay to clay-loam location: E along Huu Trach River		
River silts	Py/Pd 1,598 ha 1.37%	Valley bottoms <300 m along Huu Trach, Rao Nai and Asap Rivers	Py 1,508 ha 1.29% Pd 90 ha 0.6 %	stream alluvial soil colour: gray-brown depth: >100 cm texture: loam and loam sand location: along rivers valley bottom deposit soil colour: brown/-yellow / gray- brown depth: >100 cm		
				texture: Loam-clay location: N		

Climate

Table A1.3 presents a summary of average temperature and rainfall data collected between 1991 to 1994 in Aluoi District. Local temperatures are moderate and annual rainfall can exceed 3,000 mm.

Table A1.3	Mont	hly me	ean	tempe	erature	(°C) a	and total	rainfall (mm)	dat	a for Aloui District
	from	1991	to	1994	(data	from	General	Department	of	Hydro-Meterology
	[GDH	M]).								

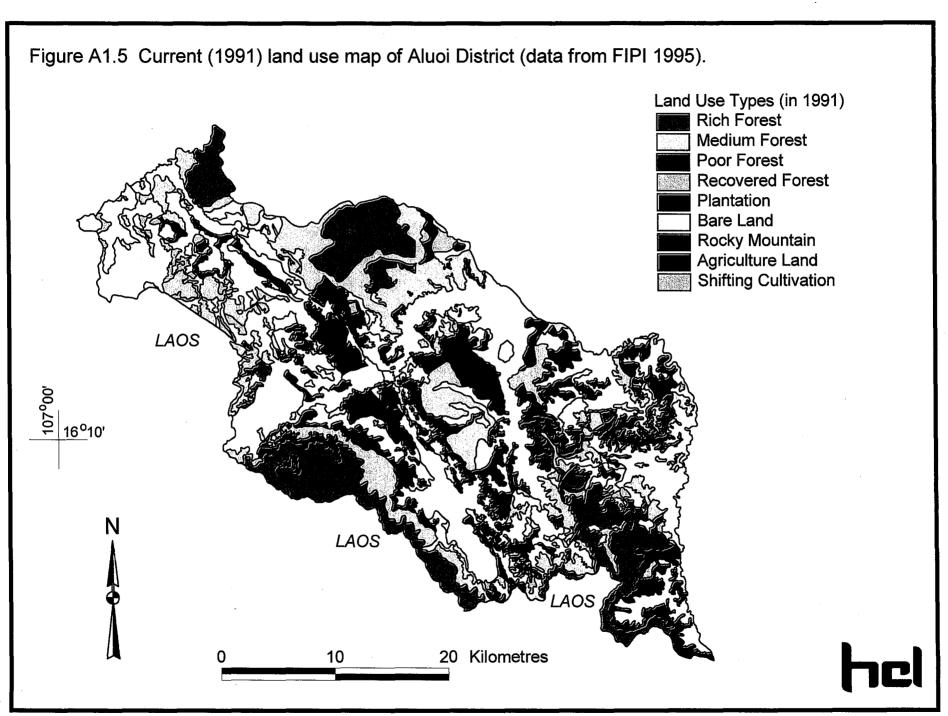
		1991	199)2	19	93	1994		
Month	Temp. (°C)	Rain (mm)	Temp (°C)	Rain (mm)	Temp. (°C)	Rain (mm)	Temp. (°C)	Rain (mm)	
January	19.0	36.7	19.2	23.0	22.7	81.3	16.1	160.5	
February	19.2	38.0	18.8	13.9	19.2	56.4	16.6	200.5	
March	20.5	ND	20.1	177.7	19.7	39.9	18.3	84.8	
April	22.0	ND	21.6	96.4	21.3	21.3	23.0	83.8	
May	25.6	ND	25.2	201.7	24.9	240.8	24.0	273.2	
June	24.8	112.1	25.0	ND	24.9	164.1	24.7	240.8	
July	25.0	112.4	25.8	ND	24.6	193.1	ND	ND	
August	24.4	167.9	24.9	90.0	24.6	129.9	ND	ND	
September	23.6	105.3	23.3	386.7	23.2	112.4	ND	ND	
October	21.1	817.1	20.1	1,483.1	26.6	998.9	ND	ND	
November	19.2	356.5	17.8	464.6	17.9	240.4	ND	ND	
December	18.0	506.3	18.6	284.1	16.6	350.2	ND	ND	
Total Rainfall		2,222.3		3,218.2		2,808.7			

ND = no rainfall data recorded.

Meteorological climate data for the Aluoi District are listed in Table A1.4 for the early 1990s. Wet season rains peak in October and November; dry season minimums occur January through March.

Parameter	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Average air temperature (°C)	16.8	18.2	20.7	22.7	24.1	24.8	24.8	24.6	23.0	21.5	19.4	17.3
Maximum air temp. (°C)	30.2	33.9	36.2	38.1	35.2	34.6	34.6	33.3	33.5	31.6	30.1	30.7
Minimum air temp. (°C)	6.6	8.2	8.1	12.5	14.2	18.3	17.2	17.4	15.4	12.9	9.2	4.0
Average ground temp. (°C)	19.2	21.0	21.7	26.4	27.5	27.7	28.4	27.5	25.9	23.5	20.9	18.9
Rain (mm)	64.5	16.4	58.3	161.3	194.7	251.4	148.1	150.0	433.6	732. 0	639.1	168.8
Number of rain days	15.5	12.8	11.8	17.5	18.5	16.9	14.8	15.4	21.6	23.6	23.6	20.4
Total evaporation (mm)	41.4	42.6	70.1	74.0	99.1	135.8	155.0	148.5	60.2	42.4	32.1	32.5
Humidity max. (%)	90.0	90.0	87.0	84.0	85.0	81.0	78.0	80.0	89.0	91.0	92.0	91.0
Humidity min. (%)	70.0	68.0	61.0	58.0	60.0	59.0	54.0	59.0	66.0	71.0	78.0	74.0
Average speed wind (m/s)	2.0	1.9	2.2	1.9	2.1	3.0	3.4	3.6	1.6	1.6	2.0	1.7

Table A1.4 Meteorological data for Aluoi District, Thua Thien Hue Province for the early 1990's (data from GDHM).


ECOSYSTEM OF ALUOI DISTRICT

Vegetation and Forests

The total area of forested lands in Aluoi District is approximately 60,095 ha; "bare" land covers 40,950 ha and "non-forest" land 15,598 ha (Table A1.5). The current known forest, bare land and other land cover types in Aluoi District are shown in Figure A1.5. Aluoi Valley is dominated by bare land (cleared grassland and brushland) and agricultural land on the relatively level valley bottom.

Pre-war forest cover was approximately 80% with high species diversity, as the region straddles two climate types (FIPI 1995). The forest types are dominated by moist, evergreen, broadleaf species. FIPI (1991) reported that most forest cover in the valley was destroyed by herbicides, with slow restoration observed after 18 years; they speculated that over 100 years would be needed for full reforestation. A FIPI forest cover map of the Aluoi Valley created in the early 1990s shows most land in the area, particularly on steep slopes surrounding the valley, to be bare or poor forest. FIPI (1991) concluded that the quickest way to rehabilitate sprayed areas was through active reforestation.

There are no natural gas or electric stoves in Aluoi; most families use firewood for cooking and heating in winter. Deforestation is extensive throughout the valley. Villagers travel considerable distances to collect wood. Recently, the government privatized land ownership to allow people to control their forest harvesting practices. Now that people are in charge of forests, they are responsible for conserving and managing their plots. Nonetheless, there is concern that local forests will be seriously depleted if present harvesting levels continue.

VN614: FRST91_NEW3.APR

Type of land cover		Area (ha)	% of total
Total forest land		60,095	51.5
Natural for	rest	59,502	
Rich fores	t	19,541	
Medium fo	rest	20,557	
Poor fores	t	17,707	
Recovered	d forest	1,697	
Plantation	*	593	
Total bare land		40,950	35.2
Grassland		8,122	
Brushland		5,773	
Mixed gras trees	ss/brush land with some	26,698	
Rocky mo	untain	357	
Total non-forest land		15,598	13.4
Agriculture	and	3,504	
Potential a	griculture land	10,661	
Shifting cu	Itivation land	462	
Other land	(village, road)	971	
Total		116,642	100
Total wood volume: Rich Forest: Medium Forest: Poor Forest:	8,699,400 m ³ 4,357,000 m ³ 2,615,700 m ³ 1,726,700 m ³		

Table A1.5 Current (1990-1995) land cover data for Aluoi District (data from FIPI 1995).

* plantation trees are: Pinus, Eucalyptus, Acacia and Cinnamon.

Listed in Table A1.6 are the current planned land uses for Aluoi district; Table A1.7 describes the planned land use types used by FIPI. The map in Figure A1.6 shows the distribution of these land use types in Aluoi District. The need for improvement of water resources is addressed with the "protected area watershed" designation. The need to promote reforestation and forest management is evident by the fact that 58.8% of lands have been designated for some form of forest use (FIPI 1995).

	Туре	Area (ha)	%
1.	Protected area of watershed	41,489	35.5
2.	Natural regeneration forest	20,797	17.9
3.	Tending forest	19,504	16.7
4.	Exploitation forest	4,181	3.6
5.	Plantation forest	593	0.5
6.	Land for forest planting	14,024	12.1
7.	Agriculture land and potential agriculture land	14,265	12.2
8.	Shifting cultivation land	462	0.4
9.	Rocky mountain	357	0.3
10.	Other land (resident land, road)	971	0.8
	Total	116,642	100

Table A1.6 Post-war (1975) planned land use for Aluoi District (data from FIPI 1995).

Table A1.7Background of planned land use types as listed in Table A1.6 (data from
FIPI 1995).

1. Protected watershed area

Function: regulating water resources, flood limitation and supplying water for streams in the dry season, counteracting soil erosion and limiting sedimentation in rivers, streams and lakes.

Objectives: improving forest quality, increasing forest cover and soil conservation.

Targets: including medium/poor forest in watersheds at high altitudes and on slopes with soils <50 cm deep.

2. Natural regeneration forest

Function: Silviculture using natural regeneration in forest succession for rehabilitation through. Prevention of forest fires and excessive logging.

Targets: bare land with scattered trees and shrub land with good natural regeneration potential.

3. Tending forest

Function: Silviculture of young forests by excluding competitors of commercial species and increasing forest production and quality.

Targets: plantation and regenerating forests on the former shifting cultivation land.

4. Exploiting forest

Function: Silviculture for improved forest harvest and local economic development. *Targets:* natural forest, mature plantation and mature regenerating forest for exploitation.

5. Plantation forest

Targets: all plantations established prior to 1990.

6. Land for forest planting

Function: Silviculture applied to grasslands for establishing plantations and includes activities of seedling production, planting, tending and forest protection.

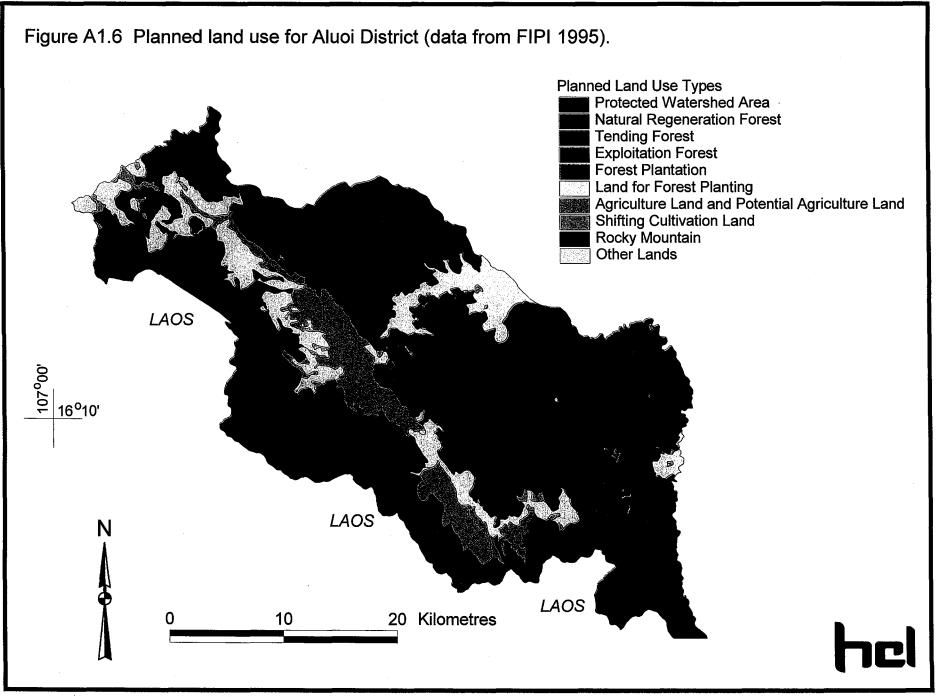
Targets: bare lands with poor natural regeneration capacity, e.g., lands near villages and along roads.

7. Agricultural land and potential agricultural land

Targets: all areas used for agriculture such as flat and alluvium areas along rivers, areas at low altitudes and near villages with good soils (may be covered with poor forest, brush land and grassland).

8. Shifting cultivation land

Targets: marginal agricultural land used in rotation according to soil fertility and ease of access.


9. Rocky mountain

Targets: steep slopes with >70 % rocky cover that may have some forest cover.

10. Other lands (residential, etc.)

Targets: Includes villages, towns and roads.

Table A1.8 lists 271 tree species recorded from Aluoi District forests. The District's forests have relatively high species diversity, but are under threat from human activities.

Sci	entific Name	Common Name	Scientific Name	Common Name
1.	GYMNOSPERMATOPHYTA	NGANH HAT TRAN	13. Dracontomelum duperreanum	Sau
	PINACEA	HO THONG	14. Mangifera spp.	Xoai
	1. Pinus caribaea	Thong Caribe	15. Semecarpus caudata	Sung duoi
	2. P. kesya	-	16. S. pamiciora	Sung
	PODOCARPACEAE	HO KIM GIAO	17. Rhus semialata	Muoi
	3. Dacrydium pierrei	Hoang dan gia	18. R. succedanea	Son
	4. Podocarpus imbricatus	Thong nang	APOCYNACEAE	HO NA
	5. P. neriifolius	Thong tre	19. Polyalthia jucunda	Nhoc
	6. P. fleuryi	Kim giao	20. Polyalthia sp.	Leo heo
11	. ANGIOSPERMATOPHYTA	NGANH HAT KIN	21. Xylopia vielana	Den
	DICOTYLEDONAE	LOP HAI LA MAM	APOCYNACEAE	-
2 · • •	ACERACEAE	HO THICH	22. Alstonia scholaris	Sua
	7. Acer campbelii	Thich xe thung	23. Wrightia annamensis	Thung muc
	8. A. decandrum	Thich muoi nhi	24. W. rubiflora	Muc
	ALANGIACEAE	HO THOI BA	AQUIFOLIACEAE	HO NHUA RUOI
	9. Alangiun kurzii	Thoi ba	25. Ilex crenata	Nhua
	10. A. ritley	Nang	26. I. godajam	Bui
	ANACARDIACEAE	ΗΟ ΧΟΑΙ	27. I. fabrilis	Bui nhui
	11. Allospondias lakonensis	Dau da xoan	ARALIACEAE	HO NGU GIA BI
	12. Bouea oppositifolin	Thanh tra	28. Schefflera octophylla	Chan chim

Table A1.8List of forest trees in Aluoi District (data from FIPI 1995).

Scientific Name	Common Name	Scientific Name	Common Name
29. S. pes-avis	Chan chim nui	CAPRIFOLIACEAE	HO COM CHAY
ASTERACEAE	HO CUC	43. Viburmum colebrookianum	Rang cua
30. Vernonia arborea	Bong hac	COMBRETACEAE	HO BANG
BETULACEAE	HO HOA	44. Terminablia catappa	Bang
31. Betula alnoides	Cang lo	CORNACEA	HO BUI LUA
BOMBACEAE	HO GAO	45. Aucuba sp.	San ho
32. Ceiba pentandra	Gia	46. Mastixia poilanei	Bui lua
BORAGINACEAE		DILLENIACEAE	HO SO
33. Cordia subcordata	Co mun	47. Dillenia ovata	So
BIGNONIACEAE	HO DINH	48. D. pentagyna	Tai tuong
34. Oroxylum indicum	Nuc nac	DIPTEROCARPACEAE	HO DAU
BURSERACEAE	HO TRAM	49. Dipterocarpus dyeri	Dau song namg
35. Canarium tonkinensis	Tram chim	50. D. hasseltii	Dau dot do la thoi
36. Dacryodes dungii	Coc da. tram hong	51. D. kerrii	Dau ke
CAESALPINIACEAE	HO VANG	52. Hopea pierrei	Ken ken
37. Cassia siamea	Muong den	53. Pasashorea stellata	Cho chai
38. Delonix regia	Phuong vi	54. Vatica fhuryana	Tan muoi
39. Erythorophleum foedii	Lim xanh	EBENACEAE	HO TRI
40. Gymnocladus chinensis	La tham	55. Diospyros buxifolia	Vay oc
41. Peltophorum dasyrrachys	Lim xet	56. D. dasyphylla	Thi rung
42. Sindora siamensis	Gu mat	57. D. eriantha	Nho noi

Scientific Name	Common Name	Scientific Name	Common Name
58. D. longipedicellata	Hong rung	77. M. codimdrixensis	Ba bet do
59. D. sylvatica	Thi nui	78. M. yunnanense	Ba bet Van nam
ERICACEAE	HO DO QUYEN	79. Ostodes paniculata	Gai go
60. Phododendron simsii	Do quyen hoa do	80. Sapium discolor	Soi
EUPHORBIACEAE	HO BA MANH VO	ELAEOCARPACEAE	HO COM
61. Alenrites moluccana	Lai	81. Elaeocarpus dubius	Com tang
62. Vernicia montana	Trau	82. E. bachmaensis	Com bach ma
63. Antidesma chomon	Choi moi	83. E. hainanensis	Com nuoc
64. Aporosa microcalyx	Trau tau	84. E. petiolatus	Com cuong dai
65. Baccaurea sylvetris	Du mooc	FABACEAE	HO DAU
66. Baccaurea sapida	Dau da dat	85. Dalbergia balansae	Co khiet
67. Bischofia javanica	Nhoi	86. Derris microphylla	Coc ken
68. Breynia grandiflora	Bo cu ve vo boc	87. Milletia nigrescens	Than mat nuoc
69. Bridelia monoica	Tho mat	88. M. pachyloba	Than mat
70. Endospermum chinense	Vang	89. Ormosia balansae	Rang rang mit
71. Erismanthus indochinensis	Nen	90. Sesbania grandiflora	So dua
72. Glochidion glaucifolium	Bot ech	FABACEAE	HO DE
73. G. macrophyllum	Bot ech than go	91. Castanopsis india	Ca oi An do
74. Macaranga denticulata	Ba soi la nen	92. C. nebulorum	Ca oi hoa mu
75. M. furetianus	Choc noc	93. C. ferox	Ca oi gai nhieu
76. Mallotus bartatus	Bum bup	94. C. fissa	Soi phang

Scientific Name	Common Name	Scientific Name	Common Name
95. Lithocarpus corneus	Soi ghe	112. Cratoxylon formosum	Thanh nganh dep
96. L. ducampii	Soi do, De do	113. C. polyalthum	Thanh nganh
97. L. gigantophylla	De la to, Soi la to	ICACINACRAE	HO THU DU
98. L. touranensis	De quan bai, soi da nang	114. Gonocaryum poilanei	Cuong vang
99. Quercus bambusaefolia	De la tre	ILLICIACEAE	HO HOI
100.Q. rubertris	De da	115. Illicium poilanei	Hoi nui
FLACOURTIACEAE	HO MUNG QUAN	JUGLANDACEAE	HO HO DAO
101. Flacourtia jamgomas	Mung quan rung	116. Engelhardtia colebrookiana	Cheo trang
102. Hydnocarpucs annamensis	Nang trung	117. E. spicata	Cheo bong
GUTTIFERAE	HO BUA	118. E. wallichiana	Cheo tia
103. Calophyllum soulattri	Cong trang	LAURACEAE	HO RE
104. <i>C. thorelii</i>	Cong	119. Actinodaphne cochinchinensis	Вор
105. C. sp.	Chuon	120. Beilschmiedia percoriacea	Chap xanh
106. Garcinia oblongifolia	Bua	121. Cinnamomum cassia	Que
107. G. cowa	Tai chua	122. Cinnamomum burmannii	Re
108. G. gaudichaudii	Vang nghe	123. C. inerr	Re gung
HAMAMELIACEAE	HO SAU SAU	124. C. obtusifolium	Re gung
109. Altingi siamensis	To hap	125. Cryptocarya lenticellata	Nanh chout
110. Thodoleia championii	Hong quang, Po linh	126. C. maclurei	Mo lung bac
111. Symgtonia populnea	Chapo tay	127. Endinandra hainanensis	Tho nam
HYPERICACEAE	HO BAN	128. Lindera myrrha	Long trung

Scientific Name	Common Name	Scientific Name	Common Name
129. Litsea baviensis	Boi boi Ba vi	MELASTOMACEAE	HO MUA
130. L. cambodiana	Boi boi Cam bot	149. Melastoma candidum	Mua
131. L. cubeba	Mang tang	150. M. eberhardtii	Mua tep
132. L. monopelata	Boi boi la tron	MELIACEAE	HO XOAN
133. L. robusta	Boi boi la to	151. Aglaia gigantea	Goi nep
134. L. verticillata	Boi boi vong	152. Aphanamixis polystachya	Goi te
135. L. glutinosa	Boi boi nhot	153. Chisocheton paniculata	Quyech
136. Machilus odoratissima	Re huong	154. Dysoxylum acutangulum	Chua khet
137. Neolitsen zeylanica	Boi boi moi	155. Khaya senegalensis	Xa cu
138. Persen americana	Во	156. Melia azedarach	Xoan
139. Phoebe cuneata	Su. khao	MIMOSACEAE	HO TRINGH NU
140. Pheobe sp.	Khao nuoc	157. Acacia auriculliformis	Tram bong vang
LECYTHIDACEAE	HO LOC VUNG	158. A. mangium	Keo mo
141. Barringtonia acutangula	Loc vung	159. A. pinnata	Xuong ran
LINNACEAE	HO LANH	160. Adenanthera microsperma	Muong rang rang
143. Ixonanthes cochinchinensis	Ha nu	161. Albizia chinensis	Song ran
MAGNOLIACEAE	HO MOC LAN	162. Pithecellobium clypearia	Man dia
144. Manglietia conifera	Мо	163. <i>P</i> . sp.	Man dia
145. M. fardiana	Vang tam	164. Paralbizia lucida	Dut ngua
146. Michelia hypoloampra	Gioi xanh	165. <i>P. tyrgid</i> a	Dai bo
147. M. foveolata	Gioi nhung	MORACEAE	HO DAU TAM
148. Pachylaman praecalva	Mo vang	166. Artocarpus intergrifolia	Mit

Scientific Name	Common Name	Scientific Name	Common Name
167. A. hirta	Mit nai	185. S. tinctorium	Tran nhuom
168. A. styracifolia	Chay la bo de	186. S. zeylanicum	Tram do
169. Broussonetia payrifera	Duong	187. S. polyalthum	Tram san
170. Dimerocarpus brinieri	May leo	188. Syzygium sp.	Tram oi
171. Morus alba	Dau	MYRSINACEAE	HO DON NEM
172. Ficus auriculata	Va	189. Ardisia sp.	Trong dua
173. <i>F. hispida</i>	Ngai	190. Rapanea aff cochinchinensis	Mat cat
174. Ficus fulva	Ngoa	POLYGALACEAE	HO VIEN CHI
175. F. championii	Da xanh	191. Xantophyllum annamense	La vang
176. <i>Ficus</i> sp.	Da	PROTEACEAE	HO MA SUA
MYRISTICACEAE	HO MAU CHO	192. Helicia nigilarica	Ma sua
177. Horsfieldia amygdalina	Xang mau	RHIZOPHORACEAE	HO DUOC
178. Knema laurina	Mau cho	193. Carallia brachiata	Truc tiet
179. <i>K. wangii</i>	Mau cho la to	ROSACEAE	HO HOA HONG
MYRTACEAE	HO SIM	194. Eriobotrya deplesa deflexa	Ti ba
180. Eucalyptus tereticomis	Bach dan trang	195. Malus doumeri	Tao meo
181. Psidium guyava	Oi	196. Prunus arborea	Xoan dao
182. Rhodomyrtus tomentosa	Sim	197. Rhaphiolepis indica	Dao banh xe
183. Syzygium cumini	Tram voi	RUBIACEAE	HO CA PHE
184. S. operculatum	Voi	198. Adina globiflora	Gao nuoc

CIDA614/Book/AppendixA1

Scientific Name	Common Name	Scientific Name	Common Name
199. Anthocephalus chinensis	Gao	215. M. sundaicus	Truong ken
200. Canthium dicoccum	Xuong ca	216. Nephelium lappaceum	Chom chom
201. Coffea liberica	Ca phe mit	217. N. chryseum	Vai rung
202. Coffea arabica	Ca phe che	218. Pometia pinnata	Truong sang
203. Randia spinosa	Gang	219. Sapindus mukorossi	Bo hon
204. R. oxyodonta	Mai tap	SAPOTACEAE	HO SEN
205. Randia sp.		220. Madhuca pasquieri	Sen mat
206. Wendlandia paniculata	Hoc quang	221. M. alpina	Sen
RUTACEAE	HO CAM	222. Planchonella annmensis	Nong gian
207. Acronychia pedunculata	Buoi bung	SIMARUBACEAE	
208. Evodia calophyllum	Thoi chanh	223. Ailanthus triphylsa	Thanh that
209. E. lepta	Ba gac	224. Eurycoma longifolia	Bach benh
210. Zanthoxylumn avicennae	Xen	SONNERATICACEAE	HO BAN
211. Z. rhetsoides	Xen la to	225. Duabanga gradiflora	Phay
SAMYDACEAE		STERCULIACEAE	HO TROM
212 Casearia sp.	Ma qua	226. Commersonia bartramia	Hu day
SAURAURINACEAE	HO PHI LAO	227. Scaphium dychnophorum	Uoi
213. Casuarina equisetifolia	Phi lao	228. Sterculia lanceolata	Sang
SAPINDACEAE	HO BO DAO	229. S. pierrei	Bai thua
214. Mischocarpus aff. Oppositifolius	Truong cuong	230. Pterospermum megalocarpum	Long mang trai to

Scientific Name	Common Name	Scientific Name	Common Name
231. P. grandiflorum	Long mang trai to	244. Aquilaria crassna	Tram huong
232. Tarrietia javanica	Huynh	TILIACEAE	HO DAY
STRYACAEAE	HO BO DE	245. Grevvia bulot	Bu lot
233. Styrax benjoin	Bo de vo do	246. G. microcos	Me co ke
234. <i>Styrax</i> sp.	Bo de la to	ULMACEAE	HO DU
SYMPLOCACEAE	HO DUNG	247. Gironniera subaequalis	Ngat
235. Symplocos adenophylla	Dung che	248. Trema orientalis	Mu day
236. S. graveolens	Dung vo mem	VERBENACEAE	HO CO ROI NGUA
237. S. crassilimba	Dung san	249. Vitex trifolia	-
THEACEAE	HO CHE	250. V. quinata	-
238. Adinandra caudata	Che beo	MONOCOTYLEDONAE	LOP MOT LA MAM
239. Eurua tonkinensis	Sum bac	BAMBUSACEAE	HO TRE NUA
240. E. japonica	Sum nhat	251. Arundinaria sp.	Sat tom
241. Schima crenata	Voi thuoc	252. Bambusa arundinacea	Tre gai
242. Temstroemica sp.	Thach dam	253. B. blumeana	Tre la nga
243. Thea sinensis	Che	254. Dendrocalamus sp.	Giang
THYMELEACEAE	HO TRAM	255. Dinochloa macleldlandu	Lin

nel

Scientific Name	Common Name	Scientific Name	Common Name
256. Lingnania sp.	Mung	264. C. tonkinesis	Mai
257. Neohouzeaua dullooa	Nua	265. Carysta mytis	Dung dinh
258. Neohouzenna sp.	Nua long dai	266. Daemonorops pierrei	Heo
PALMAE	HO CAU DUA	267. Korthalsia laciniosa	May ra
259. Areca laoensis	Cau rung	268. Plectocomia elongata	Song voi
260. A. triandra	Cau rung nhu	269. Licuala spinosa	La non
261. Arenga pinnata	Bung bang, doac	270. Livistona cochinchinensis	Со
262. Calamus poilanei	Song bot	271. L. chinensis	Co xe ke
263. C. tetradactylus	May tat		

Aquatic Ecosystem and Fish

Table A1.9 describes a basic aquatic food chain for freshwater biota in Aluoi District. It is based on food and habitat data on dominant species. Dominants are classified into nutritional levels (producers and four levels of consumers).

Table A1.9General food chain of Aluoi freshwater ecosystem.

- **Producers** are the three main groups of phytoplankton such as *Chlorophyta*, *Cyanophyta* and *Chrysophyta* and benthic plants such as *Ceratophyllum*, *Myriophyllum* and *Vallisneria*.
- First level **consumers** are zooplankton groups such as *Protozoa, Rotatoria, Copepoda and Cladocera,* and insect larvae (*diptera*), plus there are benthic molluscs including: *Limmea, Melanoides, Corbicula, Angulyagra, Antimelanoides* and some herbivorous fish species such as *Osteochilus* and *Gastromyzon*.
- Second level **consumers** include insect larvae (*Ephemeroptera, Plecoptera, Trichoptera, Odonata*) and crustaceans such as *Macrobrachium* and *Somaniathelphusa*, and some fish predators of plankton.
- Third level consumers are fishes such as Mastacembelus, Ophiocephalus, Mystus and Anguilla.
- Fourth (top) level consumers are Varanus salvator, Natrix piscator, storks, kingfishers and humans.

The District's wild fish species are well utilized by local people and many species are consumed for subsistence purposes (Tables A1.10, A1.11, A1.12 and A1.13).

Table A1.10Fish species collected from the A Sap River near Son Thuy Village, AluoiDistrict (A Sap River) (collected by Dr. Duc in 1982 & June, 1995 and by
T. Boivin and Dr. Levy April, 1995).

Scientific name	Common name	Local name	A*	Eaten (Y/N)
Cyprinidae				
Hampala macrolepidota (Van Hasselt 1842)	Ca ngua	Soc ngang	++	Y
Osteochilus hasselti (Cuvier et Valnciennes 1842)	Ca lui	Ca troi	++	N
Puntius semifasciolatus (Gunther 1868)	Dong dong	Ca can	+	Y
Puntius sp.	Ca sao	Ca sao	+	Y
Carassius auratus L. 1758	Ca diec	Ca diec	++	Y
Onychostoma gelarchi (Peters 1880)	Ca sinh	Ca xanh	++	Y
Barilius pulchellus (Smith 1931)		Mai rang	+	Y
Lissochilus sp.	_	-	+	Y
Cobitidae				
Misgumus anguillicaudatus (Canter 1842)	Chach bun	Ca nhec	++	Y
M. misolepis (Gunther 1888)	Chach bun nui	Ca nhec	+	Y
<i>Barbatula</i> sp.	Chach da	Bong da	+	Y
Claridae				
Clarias fuscus (Lacepede 1803)	Tre den	Tre den	+	Y
Bagridae				
Mystus nemurus (Cuvier et Valenciennes 1839)	Lang nha	Ca lang	+	Y
Ophiocephalidae				
Ophiocephalus gachua	Chuoi suoi	Trau suoi	+	Y
Ophiocephalus maruliodes	Mat qua	Trau day	+	Y
Cyprinodontidae				
Oryzias latipes	Ca soc	Mat nuoc	+	Ν
Gobiidae				
Glossogobius sp.	Bong	Bong	+	Y
Rhinogobius sp.	Bong	Bong	+	Y
Ctenogobius balurioides (Bleexer 1849)	Bong	Bong	+	Y
Mastacembellidae				
Mastacembellus armatus favus (Hora 1923)	Chach hoa	Lau bong	++	Y
<i>M.aculeatus</i> (Basilewski 1855)	Chach gai	Lau gai	+	Y
Ctenogobius ocellatus (Fowler 1937)	Bong	Bong	+	Y

*A = abundance: + = present / ++ = common.

Table A1.11Fish species recorded in Hong Van Village, Aluoi District (collected by Dr.
Duc, June 1995).

Scientific name	Common name	Local name	A*	Eaten (Y/N)
Cyprinidae (Carp)				
Onychostoma gelarchi (Peters 1880)	Sinh	Ca xanh	++	Y
<i>Onychostoma microcorpus</i> (Hao et Hoa 1969)	Ca mom	Ca xanh	++	N
Barilius pulchellus Smith 1931		Mai rang	+	Y
Hampala macrolepidota (Van Hasselt 1842)	Ca ngua	Soc ngang	++	Y
Cobitidae (Loaches)				Y
<i>Schistura</i> sp.	Chach da	Bong suoi	+	Y
Misgumus anguillicaudatus (Cantor 1842)	Chach bun	Ca nhec	+++	Y
Homalopteridae				
Homaloptera zollingeri (Bleeker 1853)	Bam nam	Bam da	++	Y
Sewellia sp.	Bam da	Dep	+	Y
Sisoridae				
Glyptostemon spp.	Chien suoi	Chien nguon	+	Y
Ophiocephalidae (Snakeheads)				
<i>Ophiocephalus gachua</i> (Hamilton-Buchanan 1822)	Chuoi suoi	Trau suoi	+	Y
Mastacembelidae (Spiny ells)				
Mastacembelus armatus favus (Hora 1923)	Chach hoa	Lau bong	++	Y

*A = abundance: + = present / ++ = common/ +++ = abundant.

CIDA614/Book/AppendixA1

29

Scientific name	Common name	Local name	A *	Eaten (Y/N)
Cyprinidae (Carp)				
Garra orientalis (Nichols 1925)	Ca sut mui	Cap bra	++	Y
Garra sp.		Cap bra	++	Y
Lissochilus kremfi (Pelegrin et Chevey 1936)	Ca chat	Xanh	++	Y
Onychostoma laticeps (Gunther 1896)	Sinh gai	Xanh mieng	++	Y
Opsarichthys uncirostris bidens (Gunther 1873)	Chao	Mai rang vang	+	Y
Homalopteridae				
Homaloptera zollingeri (Bleeker 1853)	Bam nam	Bam da	+	Y
Sewellia lineolata (Cuvier et Valenciennes 1846)	Bam da	Dep	+	Y
Gobiidae (loaches)				
Schitura nicholsi (Smith 1993)	Chach da	Chach da	+	Y
Anguillidae (true eels)				
Anguilla marmorata (Gaimard et Quoy)	Chinh hoa	Chinh bong	++	Y
Mastacembellidae				
Mastacembellus armatus favus (Hora 1923)	Chach hoa	Lau bong	++	Y
Mastacembellus sp.		Lau	+	Y

Table A1.12Fish species collected fron the Bo River, Hong Ha Village, Aluoi District
(collected by Dr. Duc, June 1995).

*A = abundance: + = present / ++ = common.

•

Scientific Name	Common name	Local name	A*	Eaten (Y/N)
Cyprinidae (Carp)				
Carassius auratus, L. 1758	Ca diec	Ca diec	++	Y
Puntius semifasciolatus (Gunther 1868)	Dong dong	Ca can	+++	Y
Rasbora sp.	Long tong	Mai	++	No
Cobitidae				
Misgumus anguillicaudatus (Cantor 1842)	Chach bun	Ca nhec	+++	Y
Clariidae				
Clarias fuscus	Tre den	Tre den	+	Y

Table A1.13 Fish species in the ponds of the Aluoi Valley (collected by Dr. Duc, June 1995).

*A = abundance: + = present / ++ = common / +++ = abundant.

Amphibians and Reptiles

Table A1.14 provides a partial list of amphibians and reptiles found in Aluoi District. Some species, such as the abundant frog *Rana rugolosa*, are protein sources in the diets of local people.

Scientific Name	Common name	Local name	A *	Eaten (Y/N)
	Amphibians (toads, frogs, sal	amanders)		
Bufo melanostictus	Coc nha		+	Ν
Rana rugolosa	Ech dong	A cuot	+++	Y
R. limnocharis	Nhai	Longatulo	++	Y
R. guentheri	Chau chuoc		+	N
Rhacophorus sp.	Chau		+	Y
Leucomystax sp.	Chang		+	Ν
	Reptiles (lizards, snakes &	turtles)		
Hemidactylus frenatus	Thach sung	Taro dooc	++	N
Varanus salvator	Ky da hoa	Ta ri	+	Y
Boidae				
Python morulus	Tran hoa	Tu lan	+	Y
Colubridae				
Sybinophys collaris	Ran rong		+	Ν
Elaphe radiata	Soc dua		+	N
Ptyas korros	Ran lai		+	N
Xenochrophis piscator	Ran nuoc		+	Ν
Elapidae				
Bungaruns fasciatus	Cap nong	Nep mong	+	Ν
B. candidus	Cap nia		+	Ν
Naja naja	Ho mang		+	Y
Emydidae				
Cuora galbinifrons	Rua hop		+	Y
Trinychidae				
Trionyx sp.	Baba		+	Y

Table A1.14	Amphibians	and	reptiles	of	Aluoi	Valley	(collected	by	Dr.	Duc
	June, 1995).	1								

*A: + = present / ++ = common / +++ = abundant.

Birds

Many bird species in Aluoi Valley are hunted by local people (Table A1.15).

Table A1.15	Birds of Aluoi Valley	(collected by Dr.	Duc June, 1995).
-------------	-----------------------	-------------------	------------------

Scientific Name	Common name	A*
Hirundinidae		
Hirundo rustica gutturalis	Nhan bung trang	++
Motacillidae		
Motacilla alba alboides	Chia voi trang	++
M. flava taivana	Chia voi trang	++
Pycnonotidae		
Pycnonotus sinensis sinensis	Bong lau gay trang	++
P.aurigaster delicurus	Bong lau dit do	++
P. jocosus jocosus	Chao mao	++
Sturnidae		
Sturnus sinensis	Sao da	++
Acridotheris cristallus brevipennis	Sao mo nga	++
Gracula religiosa intermedia	Yeng	+
Dicruridae		
Dicrurus anneetans annectans	Cheo beo qua	++
D.macrocercus cathoecus	Cheo beo	++
D. aenea aenea	Cheo beo rung	++
Corvidae		
Corvus torquatus	Qua khoang	+ `
C.macrohynchus	Qua den	+
Muscicapidae		
Copysychus saularis saularis	Chich choe	++
Timalia pileata	Hoa mi nho	+
Stachyris nigriceps nigriceps	Khuou dau den	+
Grarulax nomiliger pasquieri	Khuou khoanh co	+
G. chinensis chinensis	Khuou bac ma	+
Ploiceidae		
Emberiza fucata fucata	Se dong xam	++
E. aureola omata	Se dong nguc vang	++
Ardeidae		
Butorides striatus actophilus	Co xanh	+

Table A1.15 Cont'd

Scientific Name	Common name	A*
Gorsachinus melanolophus melanolophus	Vac rung	+
Accipitridae		
Milvus korselum lineatus	Dieu hau	+
Falconidae		
Falco severus severus	Cat bung hung	+
Phasianidae		
Pavo munticus imperator	Cong	Endangered
Pheinatia ocellata ocellata	Tri sao	Endangered
Lophura nycthemera beli	Ga loi beli	Endangered
Gallus gallus	Ga rung	- Rare
Rallidae		
Porzana fuscus brythrothorax	Cuoc nguc nau	++
Columbidae		
Streptopelia orientalis orientalis	Cu sen	++
S.chinensis tigrina	Cu quy	++
S. tranquebarica humilis	Cu ngoi	+++
Psittacidae		
Psittacula alexandri fasciata	Vet nguc do	++
Loriculus vernalis vernalis	Vet lun	++
Cuculidae		
Centropus ainensis intermedius	Bim bip Ion	+
Strigidae		
Otus bakkamoena lettia	Cu meo khoang co	+
Alcedinidae		
Ceryle rudis insignis	Boi ca nho	+
Halcion pileata	Sa dau den	+
Coracidae		
Eurystomus orientalis	Yeng qua	+
Bucerotidae		
Buceros biarnis cavatus	Hong hoang	+

*A: + = present / ++ = common / +++ = abundant.

Mammals

The list of mammals in Table A1.16 indicates a historically wide species diversity which has been decreasing, especially among the large mammals (FIPI 1995).

l

Scientific Name	Common name	Local name	Before* 1952	1982	1995
Elephas maximus	Voi		+	No	Endangered
Bubalus bubalus	Trau rung		+	No	No
Bos garus	Bo tot		+	No	No
Cervus unicolor	Nai	Nai	+	+	++
Muntiacus muntiak	Hoang	Mang	+	+	++
Sur scrofa	Lon rung	Heo rung	+	++	++
Capricorius sumatraentis	Son duong	De rung	+	No	Rare
Tragulus javanicus	Cheo		+	Rare	Rare
Panthera tigris	Но	Сор	+	Rare	Rare
P. pardus	Bao		+	++	++
Paradoxurus hermaphroditus	Cay voi		+	++	++
Vivera zibetha	Cay giong		+	+	Rare
Viverricula indica	Cay huong	Cay huong	+	+	+
Helarotos malyanus	Gau cho		+	Rare	+
Selenarctos thibetanus	Gau ngua		No	Rare	+
Lutra lutra	Rai ca		+	+	+
[•] Felis nebulosa	Meo gau		+	++	++
Hylobates concolor	Vuon den		+	No	+
Pygathrix nemaeus	Vooc va		+	No	+
Macaca mulata	Khi vang		+	Rare	Rare
Nycticebus sp.	Culi		+	No	No
Pataurista pentaurista	Soc bay		+	No	No
Calloscuirus erythraens	Soc bung do		+	++	++
Menetes berdmorei	Soc lung van		+	++	++
<i>Taminops</i> sp.	Soc chuot		+	++	++
Hystrix hogeoni	Nhim		+	++	++
Atherurus macrourus.	Don		+	++	++
Rhzomys sp.	Dui		+	++	++
<i>Rattus</i> sp.	Chuot		+	++	++
Manis pentadactyla	Tete		+	++	++
Chiroptera sp.	Doi		+	++	++
Rhinocros sendasicus	Te giac		+	No	No

Table A1.16Mammals of Aluoi Valley according to three surveys from 1952 to1995 (data courtesy of FIPI).

* + = present / ++ = common.

CIDA614/Book/AppendixA1

ŧ

SOCIO-ECONOMIC CONDITIONS IN ALUOI VALLEY

Human Population

The Aluoi Valley is very remote from the rest of Viet Nam, and inhabited mainly by ethnic minorities which differ in culture and language from lowland Vietnamese. Even by Vietnamese standards, the residents of this area are poor. They subsist on slash-andburn agriculture, some rice cultivation, and modest fish farming and animal husbandry.

A 1992 census estimated that the population of 31,012 persons was comprised mainly of ethnic minorities such as Ca Tu, Kinh, Pa Co and Ta Oi. Table A1.17 contains a more recent listing of populations in villages of Aluoi District and their main agricultural activities. Data are not available on population age distribution.

Transportation to the area is limited with one (unpaved) main road (Highway 14A), which is not always passable during the wet season. This road is connected to Highway 12 which leads to Hue. Local people tend to be conservative and follow traditional practices; for example, the marriage of a daughter involves provision of a large dowry of food, clothing and means of agricultural production to the son-in-law.

		•			7 1 7 1		
Village	Households	Population	Females	Minority	Rice (ha)	Cassava (ha)	
A Ruong	281	1,767	869	Ta Oi	69.9	80.0	
A Dot	257	1767	810	Ta Oi	54.0	80.0	
Huong Lam	225	1,300	653	Ca Tu	47.0	60.0	
Huong Phong	56	287	144	Kinh	1.2	7.0	
Hong Thuong	269	1,504	754	Ça Tu	23.0	50.0	
Hong Thai	154	945	480	Ta Oi	17.0	85.0	
Hong Quang	254	1,567	787	Pa Co	18.0	45.0	
A Ngo	707	4,012	2,015	Ta Oi	47.0	120.0	
Son Thuy	679	3,563	1,782	Kinh	83.4	32.0	
Phu Vinh	157	900	465	Kinh	3.2	17.0	
Hong Kim	213	1,382	694	Pa Co	31.0	55.0	
Hong Nam	293	1,602	805	Pa Co	4.0	55.0	
Hong Bac	241	1,345	678	Pa Co	19.0	56.0	
Hong Van	278	1,675	840	Pa Co	17.0	55.0	
Hong Trung	205	1,215	736	Pa Co	23.0	61.0	
Bac Son	113	732	369	Pa Co	15.5	50.0	
Hong Thuy	304	1,796	898	Pa Co	10.0	85.0	
Dong Son	173	990	498	Pa Co	23.0	50.0	
Hung Nguyen	140	880	446	Ca Tu	5.0	55.0	
Hong Ha	154	1,007	506	Ca Tu	12.0	65.0	
Nham	287	1,466	735	Ta Oi	9.4	85.0	
TOTAL	5,440	31,702	15,964		532.6	1,248	
Minority Group		Population			% of total po	pulation	
Kinh		4,750			15		
Pa Co		12,304			39		
Ta Oi			9,957		31		
Ca Tu	4,691 15						

Table A1.17Village populations, main agricultural activities and main ethnic
minority groups in Aluoi District representations (collected by Mr.
Hoang from Peoples' Committee of Aluoi Valley [April, 1995]).

Education levels of local people are low; for example, in 1992 more than 8,900 people had never attended school, 307 had completed high school (ages 14 to 17), 477 had received secondary vocational training and 149 residents had completed university.

A preliminary survey of local primary and secondary schooling as of 1995 had the following results:

Primary schools (one per village; ages 6 to 11)
 Primary and secondary (ages 11 to 14) schools (Son Thuy and Hoang Thong)
 Total students (~70% of all children)

• Female

Over 90% of the population is atheist/animist, with small numbers of Catholics and Buddhists. Intermarriage is permitted by various ethnic minority groups in Aluoi Valley. The husband is the final arbiter of disputes and paramount leader within the family unit. Until recently, the wife would be responsible for most physical work including agriculture; the husband would hunt and cut trees. Now there is a division of tasks with the husband taking on the more heavy work. If a family member becomes ill, a magician/shaman may be called.

The water resources of Aluoi are virtually unmanaged. The main source of potable water is streams; people often use unclean water. The Health Service promotes well digging, but up to now only approximately 19 wells have been dug. There are virtually no hydrological data for Aluoi. The September to December wet season includes a flooding period from October to November, particularly when annual rains exceed 3,000 mm. Only 50 ha of cropland are actively irrigated (from a diversion dam).

Aluoi has limited electricity supply by line; families usually share generator costs. A small dam for hydroelectric power (20 KW) was completed in 1984.

Public Health (survey by Dr. Hoang Trong Quynh in 1995)

There is one district hospital (A Ngo) and 21 village health clinics in Aluoi Valley. All health clinics have medical staff; however, 11 do not have their own buildings and use rooms of their village committee buildings. Medical equipment in the A Ngo hospital includes an X-ray machine, a dental drill, a microscope, a freezer, and an autoclave which are powered by generator. Available medicines in Aluoi include iodized salt, leprosy medicine, and vaccines (for whooping cough, tetanus, diphtheria, measles, tuberculosis and poliomyelitis).

The numbers of medical staff in the hospital and village health clinics are listed in Table A1.18.

3,231

Table A1.18Staffing at the hospital and clinics of Aluoi District (data from the
Vice Director of the District Health Centre).

Hospital		Village Health Clinics	
Medical doctors	4	Practical nurses	2
Laboratory technicians	4	Assistant midwife	1
Practical nurses	9	Nurses	2-3
Assistant pharmacists	3		
Midwives	4		
Orderly assistants	14		

The number of in-patients treated in 1994 was 2,105. Table A1.19 lists some serious diseases, among which respiratory illness and Malaria dominated. It should be noted, that these figures are likely low as not all villagers would go to clinics or report their illnesses.

	Table A1.19	Serious diseases	of in-patients in	Aluoi District in 1994.
--	-------------	------------------	-------------------	-------------------------

Disease	% of total in-patients
Respiratory diseases	13.9
Malaria	10.7
Diarrhea	7.5
Dysentery	5.5
Tuberculosis	1.5
Schizophrenia	0.09
Epilepsy	0.04
Leprosy	0.03

A survey of Malaria in the District's villages revealed that 3,506 person had the disease; the data are listed according to village in Table A1.20.

Table A1.20	Number of cases of Malaria in 1994 in villages of Aluoi Valley
	according to village (data from Thua Thien Hue Province Malaria
	Department)

Village	No. of cases	Village	No. of cases
Nham	188	A Ngo	53
Hong Quang	334	Hong Nam	151
Hong Thai	118	Hong Thuy	208
Hong Bac	282	Bac Son	395
Hong Kim	125	Hong Trung	82
Huong Phong	105	Dong Son	166
Huong Lain	152	Hong Thuong	152
A Dot	181	A Roang	208
Phu Vinh	50	Hong Van	134
Hong Ha	109	Huong Nguyen	250
Son Thuy	63	TOTAL	3,506

DDT spraying was discontinued in 1993; people now soak their mosquito nets with permethrin (also preferred over DDT for killing bed bugs). Mosquito density is determined by the number of mosquitoes a person can catch per hour (mosquitoes/per hour/per person). In 1994, mean local mosquito density in cowsheds and pigsties was 3.6 (for *Anopheles*) and 33.4 (for other mosquitoes). The Malaria fever rate in people was 5.03%; 15 died from Malaria in 1994.

The number of patients suffering from thyroid problems in 1994 was 9,452 representing 30.6% of the population, for which a village to village count is provided in Table A1.21. The daily use of iodized salt decreases the rate of thyroid problems.

he

Village	No. of cases	Village	No. of cases
A Roang	403	Hong Kim	526
A Dot	520	Hong Nam	459
Huong Nguyen	280	Hong Bac	293
Huong Lam	664	Hong Van	378
Huong Phong	206	Hong Trung	474
Hong Thuong	638	Hong Thuy	315
Hong Thai	620	Bac Son	321
Hong Quang	406	Dong Son	380
A Ngo	752	Hong Ha	213
Son Thuy	659	X Nham	472
Phu Vinh	473	TOTAL	9,452

Table A1.21	Numbers of persons per village in Aluoi District suffering from
	thyroid problems in 1994 (data from District health clinics).

Frequent diseases in children include pneumonia, bronchitis and diarrhea. Beriberi, caused by malnutrition, is a serious problem for local children and a good indication of the district's general poverty. For example, in two villages the infection rate was 20% among children under three years of age. Recently, treatment with B-vitamins has provided much improvement.

Contraception is rarely used as it is against customary beliefs. Men are more likely to undergo voluntary sterilization than women; for example, in A Ngo Village, the number of sterilizations in men was 49, compared to 11 for women. According to the people in Son Thuy Village, the rate of abortions in women is high. There are no occurrences of AIDS or venereal diseases such as gonorrhea or syphilis.

Economic Activities

Agriculture (data from local Head of Agriculture Department – Mr. Ho On)

The chief occupation of people living in Aluoi Valley is farming of cassava (manioc), rice and livestock (Table A1.22). According to FIPI, approximately 3,900 ha are used for agriculture, which is dominated by cassava.

Crop	ha	Туре	Crops per year	Seasons	Productivity (kg/ha)			
Cassava	1,250	2-3	1	AprOct.	7,000			
Rice (paddy)	506	long grain	2	AprAug./NovMay	2,400 (X 2)			
		short grain	2	May-Aug./DecMay				
Rice (dry land)	782	NA	1	AprOct.	1,000			
Maize	317	various	2	May-Jun./NovApr.	1,200 (total)			
Sweet potato	200	NA	2	NovFeb/May-Aug	3,500 (total)			
Peanut	56	NA	1	JanMay	1,300			
Vegetables	50	*	NA	NA	NA			
Fruit	NA	**	NA	NA	NA			
Other	NA	***	NA	NA	NA			

 Table A1.22
 Summary of agricultural production in Aluoi District in 1994.

NA = not applicable/unknown.

* = cucumber, carrot, leaves of sweet potato, beans.

** = pineapple, banana, orange, kaki (like apple), grapefruit, jackfruit, mango, papaya, watermelon.

*** = tea, chili, coffee (Hong Van), sugar cane, tobacco.

Both manure and chemical fertilizers are used. Limited amounts of pesticides are used because of their high cost (Padan [Validacin 5DD] and Trebon); herbicides include Sofid and Butavi.

Local people also forage in forests for bamboo shoots, mushrooms, banana flowers and medicinal plants. Hunting is common and many different animal species are taken.

Most farmers' families subsist on cassava as their staple; rice is eaten less frequently. Fish is eaten more than meat (which is eaten rarely). Only relatively wealthy families have surplus food. The average household experiences food shortages for up to three months a year and "poor" households may lack food for up to six months annually.

Cows are the District's most abundant livestock (Table A1.23). According to the JIVC (Japan International Volunteer Center, Hue), pig farming has not contributed significantly to improving local income levels. There is, however, a side benefit to raising pigs as their

dung is good fertilizer. Cow rearing contributes 450,000 Dong (approximately \$45 U.S.) per head every three years. Families sell livestock rather than use them for food.

Туре	Number
Cow	4,993
Buffalo	1,345
Pig	3,947
Goat	360
Chicken/Duck	10,500

Table A1.23. Livestock raised in Aluoi District.

Aquaculture

Fish culture is well established in the Aluoi Valley; most households have fishponds. There are approximately 100 ha of ponds in use. Ponds are relatively productive (approximately 4,800 kg/ha), and are the primary source of protein for the area. An average size pond in the Aluoi Valley yields approximately 200 fish per household. Table A1.24 lists the main aquaculture species.

Grass carp is the most important species. In 1990, the Hong Thuong hatchery supplied 50,000 juveniles to local farmers; since 1991 distribution has increased to 1,000,000 annually. The district hatchery has 130 ha of ponds; 60% of their production is directed at supplying grass carp fingerlings to stock local farmer's ponds. Fifteen to twenty million fry are produced per year, as well as three to four tonnes of grown-out fish. Fish are sold when they reach 3.5 to 4.0 cm (80 to 100 Dong per fish) or from 7 to 10 cm (400 to 500 Dong per fish). Juveniles take six to eight months to reach market size. The hatchery organizes workshops to help villagers build fish ponds and grow fish.

Pituitary hormones from China are used to stimulate breeding. Broodstock lasts seven to eight years; fish spawn three times per year. Some viral infections, fungal diseases and outbreaks of red ulcers have occurred in the past. Temperature and excessive rain (causing flooding and escapement from ponds) are key problems.

Aquaculture production is now greater than wild-caught fish from streams. Some sea fish, from Hue, are also marketed in the region.

Scientific name	Local name	Source
Cyprinidae		
Ctenopharyngodon idellus (Cuvier et Valenciennes)	Tram co (Grass carp)	China
Hypopthalmichthys molitrix (Cuvier et Valenciennes)	Me trang hoa (Silver Carp)	China
H. harmandi (Sauvage)	Me trang	Viet Nam
Aristichthys nobilis (Richardson)	Me hoa	China
Labeo rohita Hamilton	Troi an	India
Cirrhinus mrigal	Ca mrigan	USA
Cyprinus carpio L.	Ca chep lai	Hungary
C. carpio	(Hibrid)	Viet Nam
Cichlidae		
Tilapia nilotica	Ro phi van (Nile Tilapia)	Taiwan

Table A1.24.	Fish species	currently	used in	aquaculture	in	Aluoi	District	(data
	from FIPI 199	5).						

References

- FIPI (Forest Inventory and Planning Institute) 1991. Inventories to assess the impacts of chemical warfare on inland forests – Measures to restore. p. 233-238. In: Research documents on Forest Inventory and planning 1961-1991. Ha Noi: FIPI.
- FIPI 1995. The effects of herbicides on forest and environment on Aluoi district, Thua Thein-Hue Province. 49 p. Ha Noi: FIPI.

Appendix A2

- Spread Sheet Summaries and Congener Profile Graphics of Viet Nam dioxin data, 1996 and 1997, incorporating analytical data appearing in Appendices A2.2, A2.3 and A2.4
 - Statistics on Human Participants in the Collection of Blood for Dioxin Analyses, A So (Aluoi Valley), Viet Nam, 1997
- 2. Axys Analytical Report to Hatfield Consultants Ltd. October 1997

Analytical Data on 1996 Viet Nam Samples

3. • Axys Analytical Report to Hatfield Consultants Ltd. April 1998

Analytical Data on 1997 Viet Nam Samples

Addendum

Analytical Data on 1997 PCB/Pesticide Analyses - Reports and Batch Summary Sheets (See Appendix A2.2 for Analytical Protocols)

4. Environmental Technology Centre (ETC) (Environment Canada) Report to Hatfield Consultants Ltd. February 1998

> Analytical Data on 1997 Viet Nam Samples

5. Tabulation of Dioxin Analyses Summarized from Specific Reference Materials (Provided Courtesy of Axys Analytical Services, Sydney, British Columbia, Canada)

Section 1

 Spread Sheet Summaries and Congener Profile Graphics of Viet Nam dioxin data, 1996 and 1997, incorporating analytical data appearing in Appendices A2.2, A2.3 and A2.4

• Statistics on Human Participants in the Collection of Blood for Dioxin Analyses, A So (Aluoi Valley), Viet Nam, 1997

TABLE OF CONTENTS

LIST OF TABLES

Table A2.1.1	Dioxin and furan residues (pg/g dry weight [soils], pg/g wet weight [biological tissues] in samples collected from Viet Nam, January 1966.
Table A2.1.2	Dioxin and furan residues (pg/g dry weight [soils], pg/g wet weight [biological tissues] in samples collected from Viet Nam, November 1997.
$T_{abla} \wedge 2 + 2$	Statistics on human nortiginants in the collection of blood for disvin

Table A2.1.3Statistics on human participants in the collection of blood for dioxin
analyses, A So (Aluoi Valley), Viet Nam, 1997.

LIST OF FIGURES

Figure A2.1.1	Congener profiles of dioxins and furans in surficial soils collected from the Aluoi Valley, central Viet Nam, January 1996.
Figure A2.1.2	Congener profiles of dioxins and furans in surficial soils and aquatic sediments collected from central Viet Nam, January 1996.
Figure A2.1.3	Congener profiles of dioxins and furans in fish tissues collected from various locations in central Viet Nam, January 1996.
Figure A2.1.4	Congener profiles of dioxins and furans in biological tissues collected from various locations in central Viet Nam, January 1996.
Figure A2.1.5	Congener profiles of dioxins and furans in fish pond sediments (pg/g dry weight) and grass carp fat (pg/g wet weight) collected from A So, Aluoi Valley, central Viet Nam, November 1997.
Figure A2.1.6	Congener profiles of dioxins and furans in surficial soils (o to 10 cm depth) collected from A So, Aluoi Valley, central Viet Nam, November 1997.
Figure A2.1.7	Congener profiles of dioxins and furans in whole human blood (lipid fraction) collected from A So, Aluoi Valley, central Viet Nam, November 1997.
Figure A2.1.8	Congener profiles of dioxins and furans in soils and fish pond sediments collected in the Ma Da forest region, southern Viet Nam, November 1997.

he

Figure A2.1.9 Congener profiles of dioxins and furans in duck adipose tissue collected at A So, Aluoi Valley, central Viet Nam, November 1997.

hel

	Comolo	0070	Total	0070	Tatal	0070	Tedal	0.070	Tetal	Tetel	0070	Tetel	40070	00470	0.070	Tatal	0070	Tadal	0070	Tadal		
Sample Location and Type	Sample ID	2,3,7,8 TCDD	Total TCDD	2,3,7,8 P5CDD	Totai P5CDD	2,3,7,8 H6CDD	Total H6CDD	2,3,7,8 H7CDD	Total H7CDD	Total OCDD	2,3,7,8 TCDF	Total TCDF	1,2,3,7,8 PCDF	2,3,4,7,8 PCDF	2,3,7,8 PCDF	Total PCDF	2,3,7,8 H6CDF	Total H6CDF	2,3,7,8 H7CDF	Total H7CDF	Total OCDF	TEQ
A Ngo, Aluoi Valley								-														
bomb crater soil (0-10cm)	VN9605	1.1	2.0	ND	0.5	1.2	3.9	11	26	830	ND	0.8	ND	0.1	0.1	0.1	0.2	0.5	ND	0.5	1.0	2.3
bomb crater soil (10-30cm)	VN9613	0.9	1.2	ND	ND	1.0	3.0	11	27	950	ND	0.5	ND	ND	ND	0.1	ND	0.2	ND	0.5	0.9	2.1
fish pond sediment	VN9619	5.3	7.7	0.5	6.3	1.7	9.7	15	35	880	0.2	0.8	ND	ND	ND	ND	0.2	0.3	ND	ND	ND	6.8
carp liver	VN9618	1.0	1.5	ND	0.4	ND	ND	ND	ND	1.0	0.4	2.6	ND	0.1	0.1	1.3	ND	ND	ND	ND	ND	1.2
manioc root	VN9603	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2
Hong Thuong, Aluoi Valley																						
carp liver	VN9620	1.6	1.6	NDR	ND	ND	ND	ND	ND	1.6	0.7	1.1	ND	0.2	0.2	0.9	ND	ND	ND	ND	ND	1.9
manioc root	VN9606	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2
Hong Ha, Aluoi Valley																						
farmer's field soil (10-30cm)	VN9615	1.7	1.9	ND	ND	0.6	2.9	1.6	2.7	48	0.2	0.5	ND	ND	ND	0.3	ND	ND	ND	ND	ND	2.1
fish pond sediment	VN9635	0.3	0.3	ND	ND	0.2	0.3	0.6	1.1	18	ND	ND	ND	ND	ND	ND	ND	ND	0.1	0.1	ND	0.4
carp liver	VN9623	0.3	0.6	ND	ND	ND	1.6	1.5	3.9	4.0	0.3	1.1	ND	0.1	0.1	1.6	ND	1.1	ND	0.6	ND	0.5
Hong Van, Aluoi Valley																						
farmer's field soil (10-30cm)	VN9643	0.7	6.9	0.2	3.0	NDR	16	18	42	1700	ND	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.9
Son Thuy, Aluoi Valley																						
pig liver	VN9629	ND	ND	ND	ND	0.4	0.4	16	17	300	ND	ND	ND	0.6	0.6	0.6	3.4	3.4	7.2	7.2	2.7	1.3
Xa Nham, Aluoi Valley																						
farmer's field soil (10-30cm)	VN9631	4.3	6.5	NDR	3.9	1.5	6.6	5.3	9.9	230	ND	ND	ND	ND	ND	ND	ND	ND	NDR	ND	ND	5.0
carp fat	VN9640	0.7	2.3	ND	ND	ND	ND	ND	ND	5.1	1.2	9.2	0.4	ND	0.4	1.7	ND	ND	ND	ND	ND	1.5
A So, Aluoi Valley							x.															
former airbase soil (0-10cm)	VN9642	110	120	1.1	7.8	3.8	13	27	47	460	3.6	11	0.4	0.5	0.9	8.8	1.1	8.4	7.8	28	36	112.6
former airbase soil (10-30cm)	VN9622	32	34	NDR	0.2	3.2	7.8	12	23	430	1.1	2.7	0.2	0.2	0.4	2.9	0.7	3.7	2.4	6.7	7.5	33.3
fish pond sediment	VN9602	6.9	9.5	NDR	3.1	1.0	9.1	7.9	19	460	0.6	1.7	ND	ND	ND	1.4	ND	0.5	0.8	0.8	1.2	7.8
A Sap River sediment	VN9650	0.8	0.8	ND	ND	ND	0.5	1.5	3.6	69	ND	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2
carp fat	VN9646	51	59	1.9	2.4	ND	ND	ND	ND	ND	6.6	25	0.9	1.2	2.1	12	ND	ND	ND	ND	ND	53.7
carp liver	VN9614	2.4	3.0	ND	0.4	ND	ND	ND	ND	ND	0.4	1.3	ND	ND	ND	0.4	ND	ND	ND	ND	ND	2.6
duck liver	VN9608	1.4	1.4	ND	ND	ND	ND	ND	ND	ND	0.2	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6
Dong Ha, Quang Tri province	.			.							·····											
former airbase soil (0-10cm)	VN9645	ND	0.2	ND	ND	3.7	9.2	31	58	290	0.4	1.1	ND	0.3	0.3	3.5	1.6	11	8.3	23	26	1.6
former airbase soil (10-30cm)	VN9630	ND	ND	ND	ND	1.0	3.6	6.5	13	62	ND	ND	ND	ND	ND	ND	ND	1.3	NDR	2.1	3.9	0.6
Chi Khe, Nhge An province (referer	nce)			<u></u>																		
farmer's field soil (0-10cm)	VN9636	ND	0.2	ND	ND	1.8	1.8	0.6	1.3	13	0.2	1.1	ND	ND	ND	0.1	0.7	0.8	ND	ND	ND	0.4
farmer's field soil (10-30cm)	VN9624	ND	ND	ND	ND	2.0	2.0	0.7	1.4	16	ND	0.8	ND	ND	ND	ND	0.6	0.6	ND	ND	ND	0.6
Con Cuong, Nhge An province (refe	erence)						<u></u>								· · · · · · · · · · · · · · · · · · ·							
carp liver	VN9621	ND	0.1	ND	ND	ND	ND	ND	ND	ND	0.2	0.4	ND	ND	ND	0.3	ND	ND	ND	ND	ND	0.2
duck liver	VN9644	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2
pig liver	VN9641	ND	ND	ND	ND	ND	ND	0.7	1.2	4.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2

Table A2.1.1 Dioxin and furan residues (pg/g dry weight [soils], pg/g wet weight [biological tissues]) in samples collected from Viet Nam, January 1996.

ND = Not detected.

NDR = Peak detected but did not meet quantification criteria.

hel

Sample Location and Type	Sample ID	2,3,7,8 TCDD	Total TCDD	2,3,7,8 P5CDD	Total P5CDD	2,3,7,8 H6CDD	Total H6CDD	2,3,7,8 H7CDD	Total H7CDD	Total OCDD	2,3,7,8 TCDF	Total TCDF	1,2,3,7,8 PCDF	2,3,4,7,8 PCDF	2,3,7,8 PCDF	Total PCDF	2,3,7,8 H6CDF	Total H6CDF	2,3,7,8 H7CDF	Total H7CDF	Total OCDF	TEQ
A So, Aluoi valley																			· · · · · · · ·		N ine and the second sec	
Soil (0 to 10 cm)					****										· · · · · ·		1					
Manioc field	97VN001	6.61	8.26	NDR	1.56	0.83	8.49	4.91	10.92	142.29	0.64	3.17	ND	ND	ND	0.87	0.55	0.55	0.92	0.92	1.61	7.01
Ploughed field	97VN013	4.2	6.49	NDR	2.93	1.12	10.49	4.63	10.88	136.34	0.24	1.66	ND	ND	ND	0.78	ND	ND	0.78	0.78	1.95	4.53
Former airbase	97VN051	897.85	897.85	1.69	7.76	2.79	24.35	32.03	68.44	563.84	10.46	30.3	ND	ND	ND	23.59	2.2	8.19	7.59	19.83	16.5	901.2
Former airstrip	97VN057	88.32	88.32	2.91	7.4	5.66	19.83	32.93	65.82	697.05	3.08	11.27	0.46	0.29	0.75	6.94	2.66	8.94	6.9	22.37	30.31	92.21
Fish pond sediment				.	·	· · · · · · · · · · · · · · · · · · ·													•			
Fish pond #1	97VN005	5.2	9.9	0.8	13	0.8	10	2.4	5.3	64	0.3	2.3	ND	ND	ND	1.1	ND	0.3	ND	ND	ND	5.9
Fish pond #2	97VN007	5.4	7.1	0.4	4.5	0.8	9.3	3.5	7.9	170	0.3	1.5	ND	ND	ND	0.9	ND	0.2	ND	ND	ND	6.0
Fish pond #3	97VN009	8.5	11	0.4	3.3	0.7	5.8	4.1	9.4	220	0.5	2.2	ND	ND	ND	1.1	ND	0.2	ND	ND	ND	9.2
Fish pond #4	97VN011	1.8	3.3	0.1	2.5	ND	1.5	0.6	1.4	23	0.1	0.6	ND	ND	ND	0.4	ND	ND	ND	ND	ND	2.0
Animal tissue			•	•		•			•••••				•	• • • • • • •							<u></u>	<u>.</u>
Grass carp fat (pond#1)	97VN019	7.9	10	NDR	2.3	0.7	1.5	0.9	1.6	2.9	2.3	13	0.3	0.6	0.9	3.4	0.3	0.5	0.4	0.4	NDR	8.7
Grass carp fat (pond#2)	97VN027	16	20	0.7	4.2	NDR	1.4	0.4	0.7	1.0	2.4	11	0.3	NDR	0.3	4.0	0.7	1.1	0.1	0.1	ND	16.7
Grass carp fat (pond#3)	97VN031	21	25	0.8	4.0	NDR	0.6	0.8	0.8	3.3	4.0	15	0.6	0.8	1.4	5.0	NDR	ND	0.5	0.5	ND	22.4
Grass carp fat (pond#4)	97VN039	34	41	1.2	9.5	0.4	1.8	0.2	0.2	0.6	4.4	15	NDR	0.5	0.5	5.3	0.4	0.6	0.2	0.2	0.1	35.4
Duck fat	97VN045	6.1	7.0	0.7	3.4	ND	0.8	ND	ND	2.2	1.1	2.7	0.3	0.3	0.6	2.1	ND	ND	ND	ND	ND	7.0
Human blood (lipid basis)	1																				· · · ·	
Males, age >25	97VN047	31	31	NDR	ND	6.9	6.9	10	10	52	ND	ND	ND	3.4	3.4	3.4	16.9	17	NDR	ND	NDR	37.2
Females, age >25	97VN048	11	11	ND	ND	ND	ND	14	14	64	ND	ND	ND	ND	ND	ND	ND	ND	NDR	ND	NDR	14.3
Males, age 12 to 25	97VN049	21	21	ND	ND	NDR	ND	10	10	NDR	ND	ND	ND	ND	ND	ND	14	14	24	24	76	25.5
Females, age 12 to 25	97VN050	12	12	ND	ND	ND	ND	7.7	19	50	ND	ND	ND	ND	ND	ND	NDR	ND	12	12	ND	. 15.4
Rang Rang village, Ma Da forest r	egion																					
Soil (0 to 10 cm)	1																				••••••	
South of former airstrip	97VN075	7.86	10.13	0.6	1.41	1.24	7.22	3.29	6.62	16.58	1.03	4.02	ND	ND	ND	1.54	ND	0.51	ND	ND	0.81	8.44
North of Ma Da River	97VN077	19.1	24.88	1.76	8.94	ND	26.37	4.38	7.54	26.86	2.48	8.98	0.32	ND	0.32	5.42	ND	1.13	0.95	1.44	1.4	20.33
Former airstrip	97VN079	1.82	2.46	0.51	3.76	1.54	7.6	4.91	9.58	24.91	0.59	1.15	ND	ND	ND	0.71	ND	ND	0.44	1.07	ND	2.37
Sediment	1								, , , , , , , , , , , , , , , ,													L
Fish pond near Ba Hao	97VN073	7.8	9.71	ND	ND	ND	ND	2.98	5.85	29.51	0.59	0.88	ND	ND	ND	1.07	ND	ND	0.68	1.32	1.41	7.93
Ba Hao Reservoir	97VN089	2.28	3.34	NDR	ND	2.55	7.59	5.78	10.4	18.76	0.27	2.12	ND	ND	ND	ND	ND	ND	0.58	1.01	0.69	2.64
ND = Not detected.									لمشتبنيها					<u> </u>								

Table A2.1.2	Dioxin and furan residues (pg/g dry weight [soils], pg/g wet weight [biological tissues]) in samples collected from Viet Nam, November 1997.

ND = Not detected.

NDR = Peak detected but did not meet quantification criteria.

,

hel

Table A2.1.3Statistics on human participants in the collection of blood for dioxin
analyses, A So (Aluoi Valley), Viet Nam, 1997.

Age Category	Donor Number	Age	Directly subjected to herbicide spray	Smoking	Number of Children	Child Mortality
Males: >25 ye	ears old		· · · · · ·			
	1	67	Yes	No	9	0
	2	63	Yes	No	3	0
	3	56	Yes	Yes	6	0
	4	67	Yes	Yes	8	0
	5	70	Yes	Yes	10	0
	6	79	Yes	Yes	4	0
	7	70	Yes	Yes	4	0
	8	67	Yes	No	11	3
	9	100	Yes	No	10	2
	10	66	Yes	No	6	5
	11	71	Yes	No	4	1
	12	64	Yes	Yes	6	0
	13	55	Yes	No	5	2
	14	65	Yes	No	4	1
	15	35	Yes	Yes	8	1
	16	65	Yes	Yes	9	0
	17	78	Yes	Yes	8	2
	18	45	Yes	Yes	4	1
	19	42	Yes	No	8	2
	20	65	Yes	Yes	12	5
	21	56	Yes	Yes	11	3
	22	78	Yes	Yes	9	3
	23	35	Yes	No	10	2
	24	65	Yes	No	3	1
	25	58	Yes	No	13	3
	26	69	Yes	No	8	2
	27	40	Yes	No	6	0
	28	41	Yes	No	7	2
	29	35	Yes	No	5	2
	30	72	Yes	Yes	7	5
	31	56	Yes	No	10	2
	32	38	Yes	No	7	2
	33	57	Yes	No	7	3
	34	63	Yes	No	8	1
	35	73	Yes	No	8	1
]	36	50	Yes	Yes	5	2
	37	55	Yes	No	7	0
ĺ	38	65	Yes	No	8	0
	39	35	Yes	No	9	2
İ	40	33	Yes	No	8	4
	41	41	Yes	Yes	5	3
ľ	42	66	Yes	No	8	2
ľ	43	50	Yes	Yes	9	1
ľ	44	66	Yes	Yes	5	1
	45	55	Yes	Yes	5	1
ľ	46	49	Yes	No	7	2
	47	50	Yes	No	8	1
1	48	68	Yes	No	7	2
	49	67	Yes	No	5	1
ľ	50	88	Yes	No	12	5

Table A2.1.3 Cont'd.

Age Category	Donor Number	Age	Directly subjected to herbicide spray	Smoking	Number of Children	Child Mortality
Females: >25	years old			•		
	_ 1	50	Yes	No	8	0
	2	32	Yes	No	8	0
	3	60	Yes	No	9	0
	4	50	Yes	No	4	0
	5	50	Yes	No	8	0
	6	52	Yes	Yes	8	0
	7	55	Yes	No	14	0
	8	52	Yes	Yes	4	0
	9	50	Yes	No	4	0
	10	50	Yes	Yes	5	0
	11	60	Yes	Yes	10	0
	12	55	Yes	No	6	0
	13	35	Yes	Yes	0	0
	14	56	Yes	Yes	6	6
	15	66	Yes	No	10	3
	16	41	Yes	No	5	2
	17	60	Yes	No	2	2
	18	60	Yes	No	8	4
	19	62	Yes	Yes	9	0
	20	60	Yes	No	3	0
	21	n/a ¹	Yes	Yes	8	4
	22	n/a ¹	Yes	Yes	6	1
	23	45	Yes	No	6	2
	24	40	Yes	No	10	6
	25	60	Yes	No	3	3
	26	45	Yes	No	12	5
	27	30	Yes	No	8	3
	28	36	Yes	No	5	0
	29	65	Yes	Yes	5	0
	30	70	Yes	Yes	8	4
	31	60	Yes	Yes	10	3
ſ	32	35	Yes	Yes	7	1
ļ	33	50	Yes	Yes	9	2
	34	36	Yes	Yes	4	0
ŀ	35	65	Yes	Yes	8	2
	36	30	Yes	Yes	6	0
i i i i i i i i i i i i i i i i i i i	37	70	Yes	Yes	9	1
ŀ	38	40	Yes	Yes	10	1
	39	85	Yes	Yes	3	1
ŀ	40	41	Yes	Yes	8	4
	41	70	Yes	Yes	6	4
ŀ	42	35	Yes	no data	3	0
ŀ	43	30	Yes	no data	5	0
ľ	44	50	Yes	no data	12	5
	45	35	Yes	Yes	8	1
ŀ	46	56	Yes	Yes	12	8
ŀ	47	55	Yes	Yes	9	0
	48	60	Yes	Yes	12	3
ŀ	49	50	Yes	Yes	9	5
ŀ	50	60	Yes	Yes	8	5

¹Age was not given. However, donor was over 50 years of age by appearance.

hel

Table A2.1.3 Cont'd.

Age Category	Donor Number	Age	Directly subjected to herbicide spray	Smoking	Number of Children	Child Mortality
Males: 12-25	years old					
	1	12	No	No	0	0
	2	23	No	No	1	0
	3	12	No	No	0	0
	4	18	No	Yes	0	0
	5	12	No	No	0	0
	6	19	No	No	0	0
	7	20	No	Yes	0	0
	8	20	No	Yes	1	0
	9	25	No	Yes	7	0
	10	15	No	No	0	0
	11	23	No	Yes	1	0
	12	12	No	No	0	0
	13	23	No	Yes	0	0
	14	16	No	Yes	4	0
	15	18	No	No	0	0
	16	15	No	No	0	0
	17	25	No	Yes	6	1
	18	15	No	No	0	0
	19	15	No	No	0	0
	20	18	No	No	0	0
	21	19	No	No	0	0
	22	16	No	No	0	0
	23	24	No	No	3	0
	24	23	No	Yes	1	0
	25	22	No	Yes	2	0
	26	19	No	Yes	0	0
	27	16	No	Yes	0	0
	28	24	No	Yes	5	2
	29	18	No	Yes	0	0
	30	15	No	No	0	0
	31	15	No	No	0	0
	32	24	No	No	1	0
	33	22	No	Yes	0	0
	34	18	No	No	0	0
	35	16	No	Yes	0	0
	36	18	No	No	0	0
	37	12	No	No	0	0
	37	12	No	No	0	0
	30 39	25	No	Yes	4	1
		25 25	No	Yes	3	2
	40	25 23	No	No	0	0
	41	23 15	No	No	0	0
	42		No	<u> </u>	9	0
	43 44	25	No	No	0	0
		22				
	45	25	No	Yes	0	0
	46	23	No	No	0	0
	47	21	No	No	0	0
	48	25	Yes	No	0	0
	49	25	No	No	0	0
	50	15	No	No	0	0

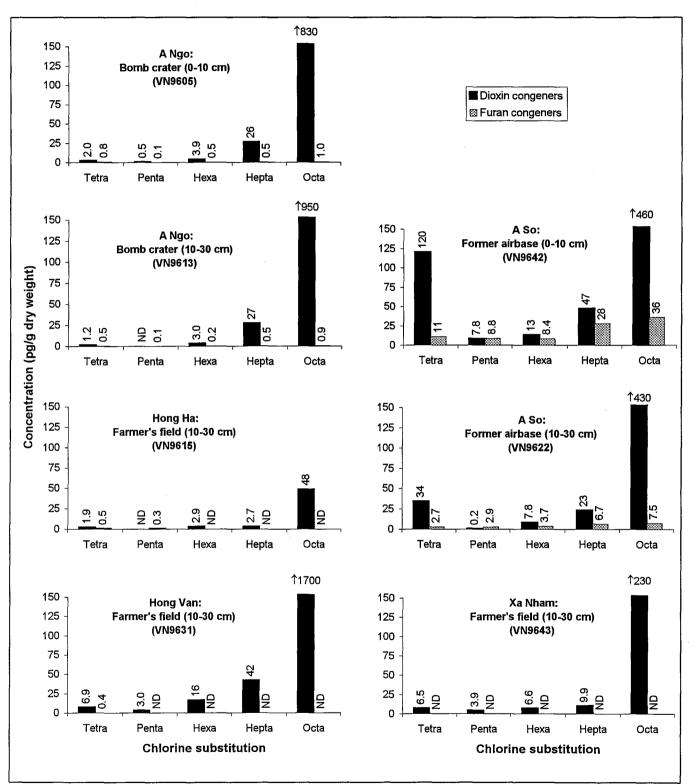
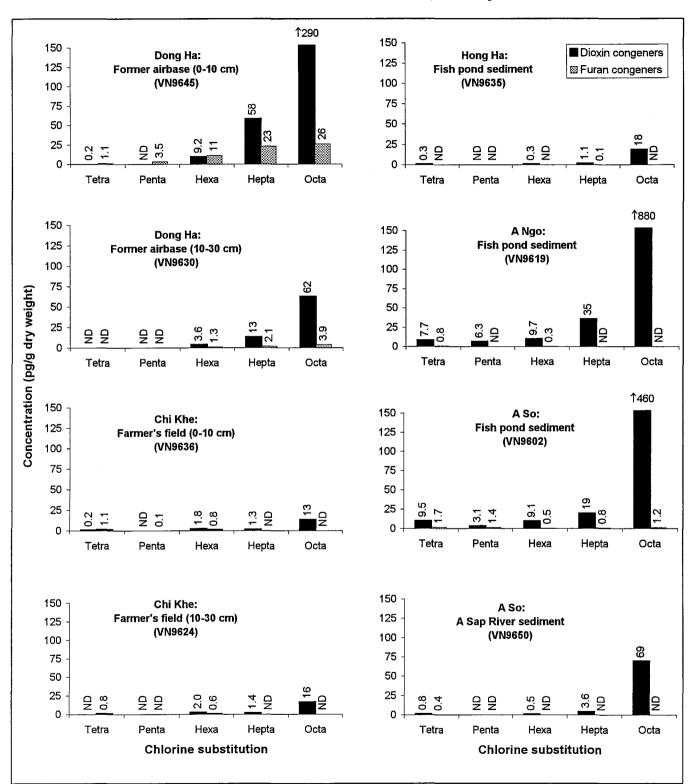
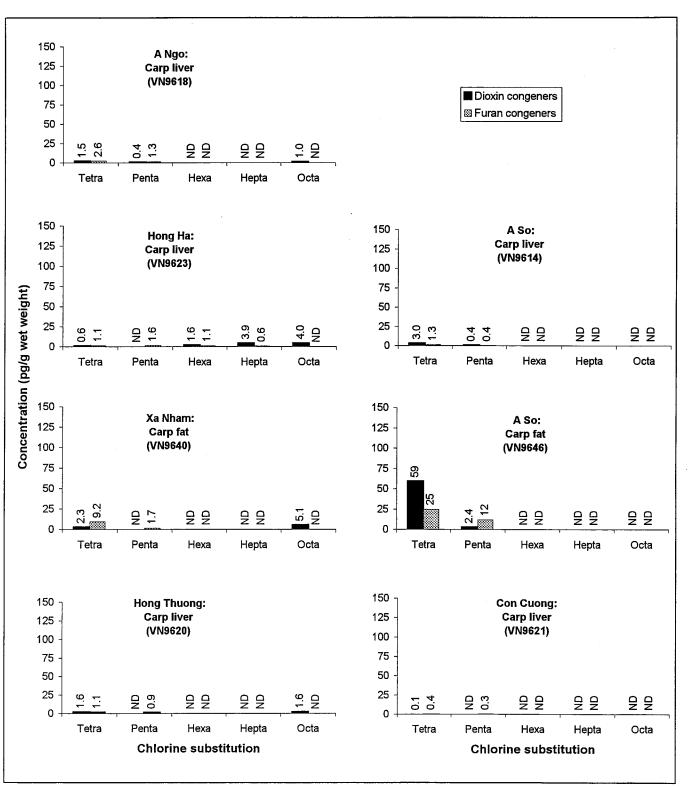

והו

Table A2.1.3 Cont'd.

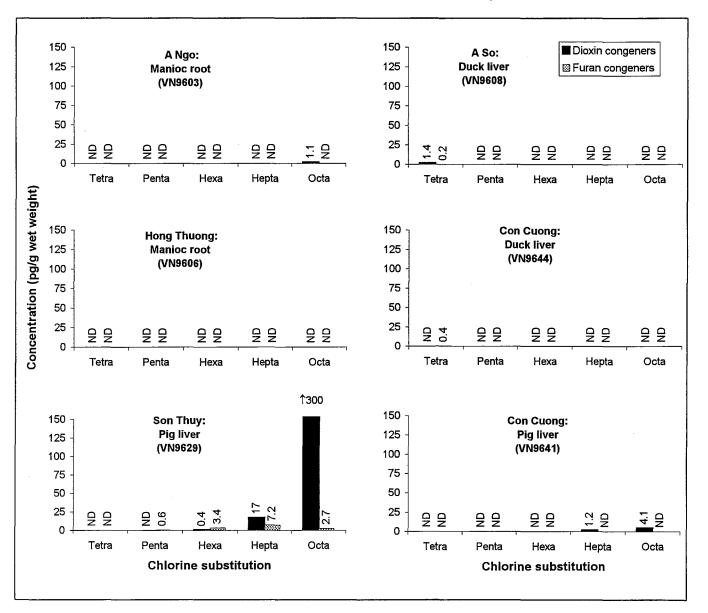
Age Category	Donor Number	Age	Directly subjected to herbicide spray	Smoking	Number of Children	Child Mortality
Females: 12-	25 years old			E	1	
	1	25	No	No	5	4
	2	25	No	No	6	0
	3	25	No	No	1	0
	4	21	No	No	3	1
	5	23	No	No	4	1
	6	25	No	Yes	3	0
	7	25	No	Yes	3	0
	8	23	No	No	1	0
	9	24	No	Yes	1	0
	10	20	No	Yes	2	0
	11	22	No	Yes	3	0
	12	25	No	Yes	2	2
	13	25	No	Yes	5	0
	14	25	No	Yes	5	1
	15	23	No	Yes	5	2
	16	21	No	No	1	0
	17	22	No	No	3	1
	18	21	No	No	2	0
	19	21	No	No	2	0
	20	25	No	Yes	2	0
	21	18	No	No	0	0
	22	20	No	No	1	0
	23	25	No	Yes	4	2
	24	21	No	Yes	2	1
	25	25	No	No	0	0
	26	23	No	No	5	3
	20	25	No	No	0	0
	28	25	No	No	2	0
	20	23	No	No	7	0
	30	21	No	No	2	0
	30	21	No	Yes		
					3	1
	32	21	No	No	1 3	0
	33	25	No	No		2
	34	19	No	No	0	0
	35	20	No	Yes	3	2
	36	15	No	No	0	0
	37	12	No	No	0	0
	38	12	No	No	0	0
	39	18	No	No	0	0
	40	23	No	No	4	0
	41	20	No	No	2	0
	42	15	No	No	0	0
	43	15	No	No	0	0
	44	15	No	No	0	0
	45	15	No	No	0	0
	46	25	No	No	0	0
	47	25	No	No	2	0
	48	12	No	No	0	0
	49	24	No	No	0	0
	50	15	No	No	0	0


Jel

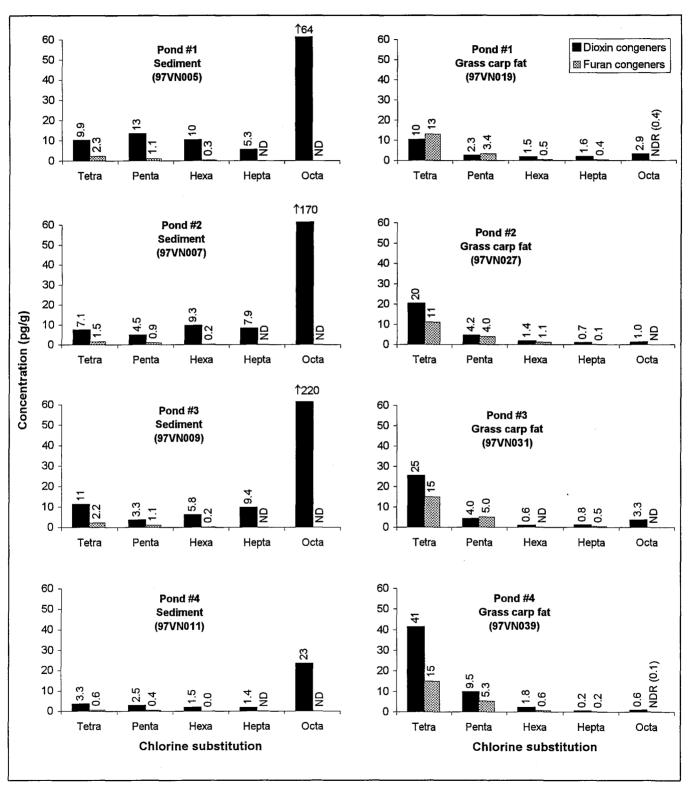
VN 614: Table A2.1.3


Figure A2.1.1 Congener profiles of dioxins and furans in surficial soils collected from the Aluoi Valley, central Viet Nam, January 1996.

hel


Figure A2.1.2 Congener profiles of dioxins and furans in surficial soils and aquatic sediments collected from central Viet Nam, January 1996

VN614:tbl4.3_96data_5.XLS


Figure A2.1.3 Congener profiles of dioxins and furans in fish tissues collected from various locations in central Viet Nam, January 1996.

hel

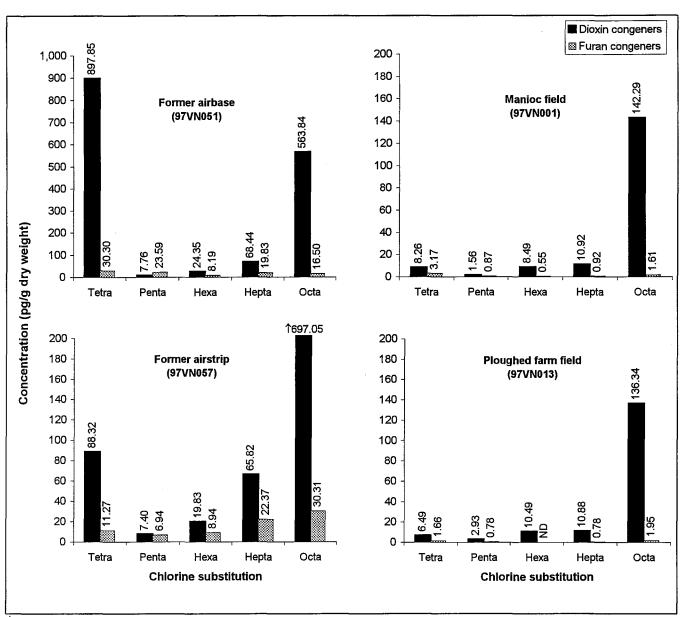
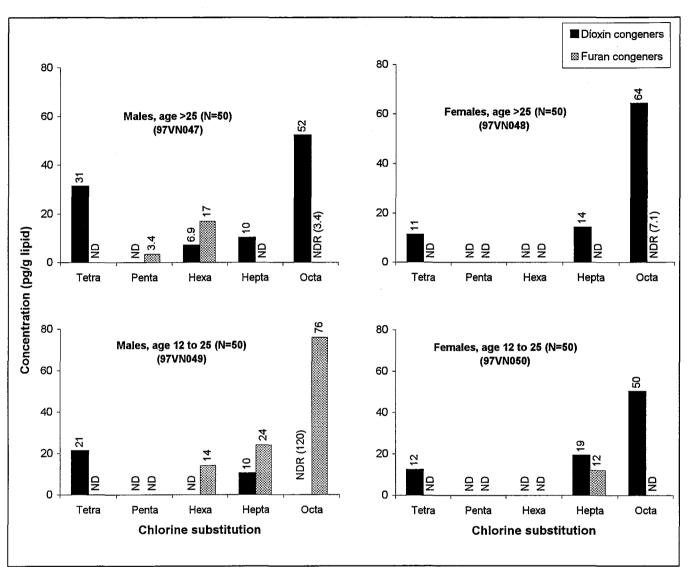
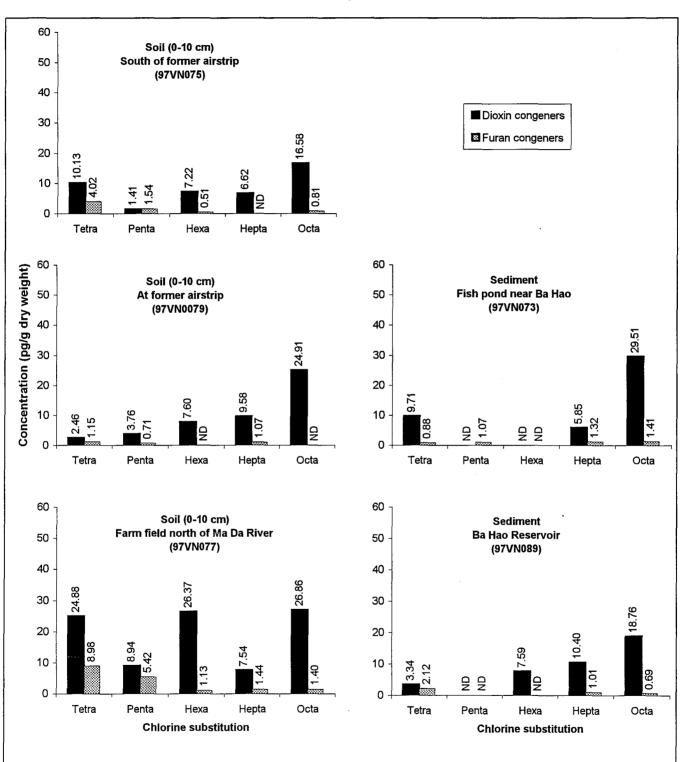


Figure A2.1.4 Congener profiles of dioxins and furans in biological tissues collected from various locations in central Viet Nam, January 1996.

Figure A2.1.5 Congener profiles of dioxins and furans in fish pond sediments (pg/g dry weight) and grass carp fat (pg/g wet weight) collected from A So, Aluoi Valley, central Viet Nam, November 1997.


hel


Figure A2.1.6 Congener profiles of dioxins and furans in surficial soils (0 to 10 cm depth) collected from A So, Aluoi Valley, central Viet Nam, November 1997.¹

Note variation in vertical scales.

VN614:tbl4.4_97data_3.XLS

Figure A2.1.7 Congener profiles of dioxins and furans in whole human blood (lipid fraction) collected from A So, Aluoi Valley, central Viet Nam, November 1997.

ന്നി

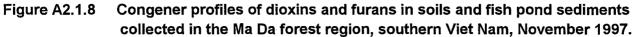
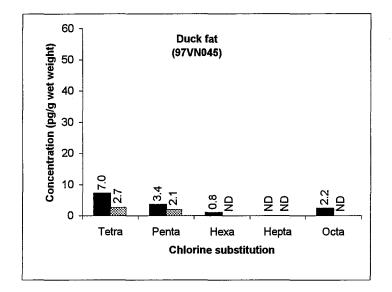



Figure A2.1.9 Congener profiles of dioxins and furans in duck adipose tissue, collected at A So, Aluoi valley, central Viet Nam, November 1997.

Section 2

Axys Analytical Report to Hatfield Consultants Ltd. October 1997

> Analytical Data on 1996 Viet Nam Samples

ANALYSIS OF POLYCHLORINATED DIOXINS AND FURANS, PCBs AND CHLORINATED PESTICIDES, AND HERBICIDES IN SAMPLES FROM VIETNAM

FINAL REPORT

Prepared for:

HATFIELD CONSULTANTS LTD Suite 201 - 1571 Bellevue Avenue West Vancouver, BC V7V 3R6

Prepared by:

AXYS ANALYTICAL SERVICES P.O. Box 2219, 2045 Mills Road West Sidney, BC V8L 3S8

October 1997

.

:

J

TABLE OF CONTENTS

1.	Introduction			
2.	Sample Handling	1		
3.	Analytical Methods	3		
	 3.1 Polychlorinated Dibenzodioxins and Dibenzofurans	3		
4.	Analytical Results	4		
5.	Quality Assurance/Quality Control	4		
	 5.1 Procedural Blanks 5.2 Duplicates 5.3 Surrogate Standard Recoveries 5.4 Reference Samples 5.5 Detection Limits 	5 5 5		
6.	Calculations	7		
Annor	dix L Analytical Methods			

Appendix 1.	Analytical Methods
Appendix II.	Dioxin/Furan Analysis Reports
Appendix III.	PCB/Pesticide Analysis Reports
Appendix IV.	Acid Extractable Herbicide Report
Appendix V.	Batch Summary Sheets

List of Tables

Table 1.	Correlation Between Axys Sample Number and Hatfield Sample			
	Identification			
Table 2.	Percent Moisture Appendix IV			

i

1

÷ 1,

1. INTRODUCTION

Axys Analytical Services Ltd. was contracted by Hatfield Consultants Ltd. to conduct trace organic analyses on environmental samples from Vietnam. Fifteen soil and thirteen tissue samples were analyzed for polychlorinated dibenzodioxins and dibenzofurans. Six soil samples and three tissue samples were also analyzed for PCBs and chlorinated pesticides. Herbicide analyses on six soil samples were carried out by ASL Ltd, Vancouver, under subcontract to Axys. Table 1 presents a correlation between Axys ID and Hatfield sample descriptions and the analyses performed.

The sample handling protocols, analysis procedures and QA/QC results are documented in this final report. Complete data reports for all samples are presented. Results for QA/QC samples (procedural blanks, analysis duplicates, and internal reference material) are also presented.

2. SAMPLE HANDLING

The importation and storage of these samples were authorized by Agriculture Canada and all storage, sample handling and laboratory procedures satisfied the requirements of the Permit to Import Animal Specimens and Product Samples issued by Agriculture Canada.

All samples were shipped frozen to Axys. Upon receipt the samples were stored at -20°C. The samples were received and maintained using chain-of-custody procedures.

Just prior to analysis, samples were thawed and then homogenized using a Virtis blender or by hand stirring. A percent moisture determination was carried out on each sample. The thawing, homogenization, moisture determination and extraction procedures were carried out in a fumehood equipped with a HEPA filter. Once the extraction procedures were complete, the fumehood and glassware were washed with a phenol based disinfectant soap.

In addition, analysts wore disposable protective clothing and plastic gloves which were autoclaved after use. Residual extracted sample and spent reagents were also autoclaved. These materials were stored at Axys until disposal by Agriculture Canada.

Table 1				
Correlation Betwen Axys Sample Number and Hatfield Sample Identification				

Í

l

AXYS ID	Hatfield ID	MATRIX	ANALYSES*
2607-01	VN9615	Sediment	DX
2607-02	VN9622	Sediment	DX, OCP, HERB
2607-03	VN9624	Sediment	DX, OCP, HERB
2607-04	VN9630	Sediment	DX, OCP, HERB
2607-05	VN9631	Sediment	DX
2607-06	VN9642	Sediment	DX, OCP, HERB
2607-07	VN9643	Sediment	DX
2607-08	VN9645	Sediment	DX, OCP, HERB
2607-09	VN9650	Sediment	DX
2607-10	VN9605	Sediment	DX
2607-11	VN9613	Sediment	DX
2607-12	VN9619	Sediment	DX
2607-13	VN9635	Sediment	DX
2607-14	VN9636	Sediment	DX, OCP, HERB
2607-15	VN9603	Plant	DX
2607-16	VN9614	Tissue	DX
2607-17	VN9618	Tissue	DX
2607-18	VN9620	Tissue	DX
2607-19	VN9621	Tissue	DX
2607-20	VN9623	Tissue	DX
2607-21	VN9629	Tissue	DX, OCP
2607-22	VN9640	Tissue	DX
2607-23	VN9646	Tissue	DX, OCP
2607-24	VN9606	Piant	DX
2607-25	VN9608	Tissue	DX
2607-26	VN9641	Tissue	DX, OCP
2607-27	VN9644	Tissue	DX
2607-29	VN9602	Sediment	DX

*DX = Dioxin/furan

= PCB/pesticide

OCP HERB

= Herbicides

3. ANALYTICAL METHODS

A complete description of the analytical methods used is presented in Appendix I.

3.1 Polychlorinated Dibenzodioxins and Dibenzofurans

Each sample was spiked with an aliquot of surrogate standard solution containing nine ¹³C-labelled dioxin and furan congeners. Soil samples were soxhlet extracted. Tissue samples were ground with sodium sulphate and packed into an glass column which was eluted with solvent. Extracts were subject to a series of chromatographic cleanup steps prior to analysis by high resolution gas chromatography with high resolution mass spectrometric detection (HRGC/HRMS).

A moisture determination was carried out on all samples. Tissue extracts were subsampled for percent lipid determination.

3.2 Chlorinated Pesticides and PCBs

Each samples was spiked with an aliquot of surrogate standard solution containing eight ¹³C-labelled pesticides and congeners and one deuterated pesticide. Soil samples were solvent extracted prior to cleanup and fractionation of silica gel. Tissue samples were ground with sodium sulphate and packed into a glass column which was eluted with solvent. One fraction was analyzed for PCBs and pesticides by gas chromatography with mass spectrometric detection. A second fraction was analyzed for the most polar pesticides by gas chromatography with electron capture detection (GC/ECD).

A moisture determination was carried out on all samples. Tissue extracts were subsampled for percent lipid determination.

3.3 Acid Extractable Herbicides

Soil samples were extracted at Axys using the protocols provided by ASL Ltd. Extracts were then shipped to ASL for analysis by GC/MS for herbicides.

4. ANALYTICAL RESULTS

Results were reported to Hatfield Consultants as the analyses were completed.

Dioxin/furan analysis reports for all samples and QA/QC samples are reported in Appendix II. Percent moisture and percent lipid are presented on each analysis report.

PCB/pesticide analysis reports for all samples and QA/QC samples are reported in Appendix III. Percent moisture and percent lipid are presented on each analysis report.

All concentrations have been corrected based on the percent recovery of surrogate standard. Concentrations are reported on a dry weight basis for soils and wet weight basis for tissues.

It should be noted that two samples analyzed for PCBs and pesticides (2607-03 and -14) required dilution and additional aliquots of surrogate standard. It was therefore not possible to report percent surrogate recoveries for these sample or to report recovery corrected concentrations. The concentrations reported for these two samples should be considered minimum concentrations.

The herbicide data report received from ASL is presented in Appendix IV. The data for the percent moisture determination is presented in Table 2 in Appendix IV.

5. QUALITY ASSURANCE/QUALITY CONTROL

Samples were worked up in batches with accompanying QC samples. Each batch progressed from sample workup through instrumental analysis and onto data interpretation and final reports as a unit. The sample results were reviewed and evaluated in relation to the QA/QC samples worked up at the same time.

The composition of each batch of samples analyzed is detailed in a Batch Summary presented in Appendix V. A procedural blank, analysis duplicate and reference sample were analyzed with each batch of samples.

5.1 Procedural Blanks

Overall, procedural blanks demonstrated non-detectable or low background levels of target compounds. It should be noted that for samples with low concentration of PCBs and

pesticides, the background level of hexachlorobenzene in blank CL-S-BLK 1107i may be significant and should be considered when reviewing the sample data.

5.2 Duplicates

Results for duplicates are reported along with the sample analysis results. Agreement within each set of duplicates satisfied Axys' criterion of \pm (20% of the mean + Detection Limit)

5.3 Surrogate Standard Recoveries

The recovery of each surrogate standard was monitored by comparing its response to that of the recovery standard added just prior to instrumental analysis. The calculation of percent recovery is explained in Section 6.

Surrogate standard recoveries for each sample are presented along with the sample data, on each analysis report. Surrogate standard recoveries satisfied Axys' quality control standards criterion that they must be within an established acceptable range.

5.4 Reference Samples

A reference sample, either a spiked sample or certified reference material, was worked up with each batch of samples and used to demonstrate the accuracy of the data. Spiked samples were prepared at Axys by adding a solution of authentic target analytes into a weighed amount of in-house reference material. A sample of NIST 1588 Cod Oil was analyzed as a tissue reference sample for the PCB/pesticide analysis. The percent recovery of the target analytes generally fell within 70% - 130%, which meets Axys' criterion for acceptability.

5.5 Detection Limits

Detection limits were calculated on a sample-specific basis and are reported for each sample on the analysis report.

Detection limits were calculated using a minimum area based on the noise level in the chromatogram. The minimum area is the area of a peak with a height three times the maximum height of the noise. Only peaks with responses greater than three times the

background noise level were quantified. The calculation of detection limits is described in Section 6.

6. CALCULATIONS

The internal standard method was used to quantify components in the samples. Conc_i, the concentration of a component in a sample, was calculated using the following equations:

$$Conc_i = \frac{A_i}{A_{si}} \times \frac{W_{si}}{W_i} \times RRF_{i,si}$$

where

A,

A_{si}

= area of the analyte peak of interest to quantify

= area of labelled surrogate used to quantify i

W_i = weight of sample taken for analysis

 W_{si} = weight of labelled surrogate added to sample

RRF_{i,si} = relative response factor of i to si as determined by daily runs of the calibration standard solution and defined as

$$\frac{A_i}{A_{si}} \quad x \quad \frac{W_{si}}{W_i}$$

Detection limits were also calculated using the above equations with the minimum detectable peak area used for A_i . The minimum detectable peak area was calculated as three times the maximum noise in the chromatogram (height of noise x area / height ratio of a typical peak x 3).

Recoveries of internal standards were calculated using the following equation.

$$\% Recovery = \frac{A_{si}}{A_{rs}} \times \frac{W_{rs}}{W_{si}} \times RRF_{si,rs}$$

where A_{si} and A_{rs} are the areas of the labelled surrogate and the recovery standard in the sample run and W_{rs} , W_{si} are the weights of recovery standard and labelled surrogate added to the sample. RRF_{si,rs} is the relative response factor of the labelled surrogate to the recovery standard as determined by daily runs of the quantification solution and defined by

$$\frac{A_{si}}{A_{rs}} \quad x \quad \frac{W_{rs}}{W_{si}}$$

}

Appendix I

Analytical Methods

] / ł I

ANALYSIS OF POLYCHLORINATED DIOXINS AND FURANS IN SOIL AND TISSUE SAMPLES

Summary

All samples were spiked with ¹³C-labelled surrogate standards (tetrachlorodioxin, tetrachlorofuran, pentachlorodioxin, pentachlorofuran, hexachlorodioxin, hexachlorofuran, heptachlorodioxin, heptachlorofuran, and octachlorodioxin) prior to analysis. Soil samples were soxhlet extracted. Tissue samples were ground with sodium sulphate, loaded into a glass chromatographic column and eluted with solvent. All extracts were subject to a series of chromatographic cleanup steps prior to analysis for polychlorinated dibenzodioxins and dibenzofurans by high resolution gas chromatography with high resolution mass spectrometric detection (HRGC/HRMS).

1. EXTRACTION PROCEDURES

Soils

A subsample of soil was dried overnight at 105°C to determine moisture content.

Soil sample was ground with anhydrous sodium sulphate, the mixture was transferred to a soxhlet thimble and an aliquot of surrogate standard solution added. The soxhlet was allowed to reflux for 16 hours with 80:20 toluene:acetone. The cooled extract was transferred to a separatory funnel and sequentially washed with potassium hydroxide solution, distilled water, concentrated sulphuric acid and distilled water. The organic layer was dried over anhydrous sodium sulphate, the solvent evaporated to dryness and the residue redissolved in hexane. The extract was ready for chromatographic cleanup procedures.

Tissues

A subsample of tissue was dried overnight at 105°C to determine moisture content.

Tissue sample was ground with anhydrous sodium sulphate. The mixture was transferred to a glass chromatographic column containing 1:1 dichloromethane:hexane and an aliquot of surrogate standard solution was added. The column was eluted with additional solvent. The eluate was subsampled for gravimetric lipid determination. The remaining extract was concentrated, loaded onto a gel permeation column (to remove lipids and high molecular weight interferences) and eluted with 1:1 dichloromethane:hexane. The 150 - 300 mL fraction was collected and concentrated prior to chromatographic cleanup procedures.

2. CHROMATOGRAPHIC CLEANUP PROCEDURES

a) Silica Gel Column

The extract was transferred to a layered silica gel column. Soil extracts were eluted with hexane. Tissue extracts were eluted with 1:1 dichloromethane:hexane. The eluate was concentrated by rotary evaporation.

b) Alumina Column

The extract from the silica gel column was loaded onto a basic alumina column. The first fraction, eluted with 3% dichloromethane:hexane was discarded. The second fraction, eluted with 1:1 dichloromethane:hexane was retained and concentrated by rotary evaporation.

c) Carbon/Celite Column

The extract from the alumina column was loaded onto a carbon/Celite column. The column was eluted with 1:1 cyclohexane:dichloromethane (discard) followed by 1:1 ethylacetate:toluene (discard). The column was inverted and eluted with toluene (collected). The fraction was evaporated to near dryness and redissolved in hexane.

d) Alumina Column

The extract from the carbon/Celite column was loaded onto a basic alumina column. The first fraction, eluted with hexane was discarded. The second fraction, eluted with 1:1 dichloromethane:hexane was retained and concentrated.

e) Preparation for GC/MS Analysis

The extract was evaporated just to dryness and aliquots of recovery standards (¹³C-labelled 1,2,3,4-tetrachlorodibenzodioxin and 1,2,3,7,8,9-hexachlorodibenzodioxin) were added.

3. HIGH RESOLUTION GC/MS ANALYSIS

Polychlorinated dibenzodioxins (PCDD) and dibenzofurans (PCDF) were analyzed on an Ultima Autospec mass spectrometer equipped with a Hewlett Packard 5890 gas chromatograph, a DB-5 capillary chromatography column (60 m, 0.25 mm i.d \times 0.1 μ m film thickness) and a CTC autosampler. Data were acquired in the voltage selected ion recording mode (SIR) to enhance sensitivity. At least two ions were used to monitor each of the target analytes and ¹³C-labelled surrogate standards. Five additional ions were monitored to check for interference from chlorinated diphenyl ethers.

The instrumental conditions, analyte identification and quantification protocols for PCDDs/PCDFs, as described in Environment Canada Report EPS 1/RM/19, February 1992¹ were strictly adhered to.

4. QUANTITATION PROCEDURES

Concentrations of target analytes were calculated using the isotope dilution method of quantitation. PCDDs and PCDFs were quantified by comparing the area of the quantification ion to that of the corresponding ¹³C-labelled surrogate standard and correcting for response factors. Response factors were determined daily using authentic PCDDS and PCDFs.

Concentrations of analytes were corrected based on the percent recovery of surrogate standards. Concentrations are reported in pg/g dry weight for soils and pg/g wet weight for

tissues.

Sample detection limits are reported for each target analyte, based on a minimum detectable area for that compound in the chromatogram.

REFERENCES

1. Environment Canada Reference Method EPS 1/RM/19, *Reference Method for the Determination of Polychlorinated Dibenzo-para-dioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) in Pulp and Paper Mill Effluents,* February 1992.

ANALYSIS OF PCBs AND CHLORINATED PESTICIDES IN SOIL AND TISSUE SAMPLES

Summary

All samples were spiked with a suite of ¹³C-labelled surrogate standards (hexachlorobenzene, gamma-BHC, p,p'-DDE, p,p'-DDT, Mirex, PCB 101, PCB 180, and PCB 209) and perdeuterated alpha-endosulphan. Soil samples were solvent extracted. Tissue samples were extracted by grinding with sodium sulphate followed by elution through a glass column with solvent. The final extracts were separated into two fractions on a Florisil column. One fraction was analyzed by high resolution gas chromatography with detection by either quadrupole or high resolution mass spectrometry for PCBs (as Aroclors) and non-polar and moderately polar chlorinated pesticides. A second fraction was analyzed for the most polar chlorinated pesticides by gas chromatography with election capture detection (GC/ECD).

1. EXTRACTION PROCEDURES

Soils

A moisture determination was carried out on a subsample by drying overnight at 105°C.

A homogenized soil sample was spiked with an aliquot of surrogate standard. The sample was extracted by shaking with 1:1 dichloromethane:methanol followed by dichloromethane. The extracts were combined. The extract was washed with solvent-extracted distilled water to remove methanol. The dichloromethane extract was dried over anhydrous sodium sulphate and concentrated. The extract was ready for chromatographic cleanup procedures.

Tissue

A moisture determination was carried out on a subsample by drying overnight at 105°C.

A homogenized wet tissue sample was ground with anhydrous sodium sulphate. The mixture was transferred to a glass chromatographic column containing dichloromethane and an aliquot of surrogate standard solution added. The column was eluted with additional solvent. The eluate was collected and concentrated. The extract was subsampled for gravimetric lipid determination.

The remaining extract was loaded in dichloromethane onto a calibrated gel permeation which was eluted with 1:1 dichloromethane:hexane. The 160 - 320 mL fraction was collected and concentrated by rotary evaporation. The extract was ready for chromatographic cleanup procedures.

2. CHROMATOGRAPHIC CLEANUP PROCEDURES

The extract was applied to a Florisil column. The column was eluted with hexane (F1) followed by 15:85 dichloromethane:hexane (F2). The eluates were combined (F1 + F2). The column was eluted with 1:1 dichloromethane:hexane (F3) and the eluate collected. Each fraction was concentrated.

(250) 656-0881 FAX (250) 656-0881 FAX (250) 656-0881 FAX (250) 656-0881 FAX (250) 656-4511
 (250) 656-0881 FAX (250) 656-4511

F1 + F2 was transferred to an autosampler vial and an aliquot of recovery standard (13 C-labelled PCB 153) added. The autosampler vial was capped ready for analysis of non-polar and moderately polar chlorinated pesticides.

F3+F4 was transferred to an autosampler vial and an aliquot of recovery standard (¹³C-labelled PCB 153) added. The autosampler vial was capped ready for GC/ECD analysis of polar chlorinated pesticides.

3. INSTRUMENTAL ANALYSIS

The GC/MS analysis of tissue extracts (F1 + F2) for PCBs and chlorinated pesticides was carried out using a Finnigan INCOS 50 mass spectrometer equipped with a Varian 3400 GC, a CTC autosampler and a DG 10 data system running Incos 50 (Rev 11) software or a VG SE 70 high resolution mass spectrometer (MS) equipped with a Hewlett Packard 5890 gas chromatograph, a CTC autosampler and a VAX work station. Data were acquired in the Multiple Ion Detection (MID) mode to enhance sensitivity. Two characteristic ions for each target analyte and surrogate standard were monitored.

Chromatographic separation was achieved with a DB-5 capillary chromatography column (60 m, 0.25 mm i.d \times 0.1 μ m film thickness). A splitless/split injection sequence was used.

GC/ECD Analysis

Chlorinated pesticides in F3 + F4 were analyzed by GC/ECD using a Hewlett Packard 5890 gas chromatograph, with a ⁶³Ni electron capture detector and a DB5 Durabond Fused Silica capillary column (60 m x 0.25 mm, 0.10 μ m film).

4. QUANTITATION PROCEDURES

Concentrations of target analytes were calculated using the isotope dilution method of quantitation. Compounds were quantified by comparing the area of the quantification ion to that of the corresponding ¹³C-labelled standard and correcting for response factors. Response factors were determined daily using authentic pesticides.

Concentrations of analytes have been corrected based on the percent recovery of surrogate standards. Concentrations have been reported in ng/g dry weight for soils and ng/g wet weight for tissues.

PCBs are reported as concentrations of Aroclor 1242, 1254, and 1260.

EXTRACTION OF SOILS FOR ACID EXTRACTABLE HERBICIDES

A subsample of soil was dried overnight at 105°C to determine moisture content.

An aliquot of surrogate standard solution (2,4-dichlorophenylacetic acid, 100 ppm) was added to an accurately weighed sample (15 g) in a clean centrifuge tube. The mixture was extracted by shaking for 30 minutes with acidified acetone (25 mL, 1% HCl). The mixture was spun in a centrifuge and the acetone decanted into a clean glass container. The extraction step was repeated twice more with acidified 1:1 acetone:diethylether (25 mL, 1% HCl). The organic extracts were combined and shipped to ASL for analysis of acid extractable herbicides by GC/MS

MAXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA V8L 358 TEL (250) 656-0881 FAX (250) 656-4511

Appendix II

Dioxin/Furan Analysis Reports

l 1

CLIENT SAMPLE I.D.: VN9615

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment METHOD NO .: DX-S-01/Ver.2 Hong Ha Soil (10 – 30 cm) **INSTRUMENT: GC-HRMS** SAMPLE SIZE: 8.53 g dry Farmer's Field % MOISTURE: 16 CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	1.9	0.2	T4CDF - Total	0.5	0.2
2,3,7,8	1.7	0.2	2,3,7,8	0.2	0.2
P5CDD - Total	ND	0.2	P5CDF - Total	0.3	0.2
1,2,3,7,8	ND	0.2	1,2,3,7,8	ND	0.2
			2,3,4,7,8	ND	0.2
H6CDD - Total	2.9	0.4	H6CDF - Total	ND	0.4
1,2,3,4,7,8	ND	0.4	1,2,3,4,7,8	ND	0.4
1,2,3,6,7,8	ND	0.4	1,2,3,6,7,8	ND	0.4
1,2,3,7,8,9	0.6	0.4	2,3,4,6,7,8	ND	0.4
			1,2,3,7,8,9	ND	0.4
H7CDD - Total	2.7	0.6	H7CDF - Total	ND	0.6
1,2,3,4,6,7,8	1.6	0.6	1,2,3,4,6,7,8	ND	0.6
			1,2,3,4,7,8,9	ND	0.6
O8CDD - Total	48	0.9	O8CDF - Total	ND	0.9

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	2.1	pg/g
13C-T4CDF	77			
13C-T4CDD	69	2,3,7,8 - TCDD TEQs (ND=0) =	1.8	pg/g
13C-P5CDF	68			
13C-P5CDD	59			
13C-H6CDF	79			
13C-H6CDD	63			
13C-H7CDF	69			
13C-H7CDD	77			
13C-08CDD	42			

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Mclamilk

Approved

AXYS FILE: 2607-01 A

CLIENT SAMPLE I.D.: VN9615

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 8.60 g dry

Hong Ha Soil (10 – 30 cm) Farmer's Field

% MOISTURE: 16

METHOD NO .: DX-S-01/Ver.2 INSTRUMENT: GC-HRMS CONCENTRATION IN: pg/g

AXYS FILE: 2607-01 B Duplicate

DATE: 13/Aug/97

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	1.9	0.2	T4CDF - Total	0.2	° 0.2
2,3,7,8	1.7	0.2	2,3,7,8	0.2	0.2
P5CDD - Total	ND	0.2	P5CDF - Total	0.4	0.2
1,2,3,7,8	ND	0.2	1,2,3,7,8	ND	0.2
			2,3,4,7,8	ND	0.2
H6CDD - Total	2.5	0.4	H6CDF - Total	ND	0.4
1,2,3,4,7,8	ND	0.4	1,2,3,4,7,8	ND	0.4
1,2,3,6,7,8	ND	0.4	1,2,3,6,7,8	ND	0.4
1,2,3,7,8,9	0.6	0.4	2,3,4,6,7,8	ND	0.4
			1,2,3,7,8,9	ND	0.4
H7CDD - Total	2.5	0.6	H7CDF - Total	ND	0.6
1,2,3,4,6,7,8	1.4	0.6	1,2,3,4,6,7,8	ND	0.6
			1,2,3,4,7,8,9	ND	0.6
O8CDD - Total	52	0.9	O8CDF - Total	ND	0.9

Surrogate Standards	% Recovery 2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)				
	•	2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	2.1 pg/g		
13C-T4CDF	100		L. P9/9		
13C-T4CDD	87	2,3,7,8 - TCDD TEQs (ND=0) =	1.8 pg/g		
13C-P5CDF	92				
13C-P5CDD	82				
13C-H6CDF	89				
13C-H6CDD	82				
13C-H7CDF	110				
13C-H7CDD	100				
13C-08CDD	70				

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Melanult

Approved

CLIENT SAMPLE I.D.: VN9622

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 8.89 g dry

A So Soil (10 - 30 cm) Abandoned Airbase

% MOISTURE: 15

METHOD NO.: DX-S-01/Ver.2 **INSTRUMENT: GC-HRMS**

CONCENTRATION IN: pg/g

AXYS FILE: 2607-02

DATE: 13/Aug/97

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	34	0.2	T4CDF - Total	2.7	0.2
2,3,7,8	32	0.2	2,3,7,8	1.1	0.2
P5CDD - Total	0.2	0.2	P5CDF - Total	2.9	0.2
1,2,3,7,8	NDR(0.4)	0.2	1,2,3,7,8	0.2	0.2
			2,3,4,7,8	0.2	0.2
H6CDD - Total	7.8	0.3	H6CDF - Total	3.7	0.3
1,2,3,4,7,8	0.3	0.3	1,2,3,4,7,8	0.7	0.3
1,2,3,6,7,8	0.7	0.3	1,2,3,6,7,8	ND	0.3
1,2,3,7,8,9	2.2	0.3	2,3,4,6,7,8	ND	0.3
			1,2,3,7,8,9	ND	0.3
H7CDD - Total	23	0.6	H7CDF - Total	6.7	0.6
1,2,3,4,6,7,8	12	0.6	1,2,3,4,6,7,8	2.4	0.6
			1,2,3,4,7,8,9	ND	0.6
O8CDD - Total	430	0.9	O8CDF - Total	7.5	0.9

Surrogate Standards % Recovery		2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	33.3	pg/g
13C-T4CDF	93			
13C-T4CDD	83	2,3,7,8 - TCDD TEQs (ND=0) =	33.2	pg/g
13C-P5CDF	86			
13C-P5CDD	77			
13C-H6CDF	89			
13C-H6CDD	80			
13C-H7CDF	97			
13C-H7CDD	85			
13C-08CDD	46			

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Mclamet Approved

CLIENT SAMPLE I.D.: VN9624		AXYS FILE: 2607-03
CLIENT: Hatfield Consultants Ltd.		DATE: 13/Aug/97
SAMPLE TYPE: Sediment	Chi Khe Soil (10 – 30 cm)	METHOD NO.: DX-S-01/Ver.2
SAMPLE SIZE: 8.82 g dry	Farmer's Field	INSTRUMENT: GC-HRMS
% MOISTURE: 12	(Reference)	CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Totai	ND	0.2	T4CDF - Total	0.8	0.2
2,3,7,8	ND	0.2	2,3,7,8	ND	0.2
P5CDD - Total	ND	0.2	P5CDF - Total	ND	0.2
1,2,3,7,8	ND	0.2	1,2,3,7,8	ND	0.2
			2,3,4,7,8	ND	0.2
H6CDD - Total	2.0	0.3	H6CDF - Total	0.6	0.3
1,2,3,4,7,8	ŅD	0.3	1,2,3,4,7,8	ND	0.3
1,2,3,6,7,8	0.7	0.3	1,2,3,6,7,8	ND	0.3
1,2,3,7,8,9	1.3	0.3	2,3,4,6,7,8	ND	0.3
			1,2,3,7,8,9	0.6	0.3
H7CDD - Total	1.4	0.6	H7CDF - Total	ND	0.6
1,2,3,4,6,7,8	0.7	0.6	1,2,3,4,6,7,8	ND	0.6
			1,2,3,4,7,8,9	. ND	0.6
O8CDD - Total	16	0.9	O8CDF - Total	ND	0.9

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	0.6 pg/g
13C-T4CDF	83		0.0 pg/g
13C-T4CDD	79	2,3,7,8 - TCDD TEQs (ND=0) =	0.3 pg/g
13C-P5CDF	79		
13C-P5CDD	67		
13C-H6CDF	100		
13C-H6CDD	85		
13C-H7CDF	96		
13C-H7CDD	92		
13C-08CDD	94		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Medamilton Approved

MAXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., (ANADA VBL 358 TEL (250) 656-0881 FAX (250) 656-4511

CLIENT SAMPLE I.D.: VN9630

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 7.88 g dry

Dong Ha Soil (10 – 30 cm) Abandoned Airbase

% MOISTURE: 23

Dioxins Concentration (SDL) Concentration (SDL) Furans **T4CDD - Total** ND T4CDF - Total ND 0.2 0.2 2,3,7,8 ND 0.2 2,3,7,8 ND 0.2 **P5CDD - Total** P5CDF - Total ND 0.2 ND 0.2 1,2,3,7,8 ND 0.2 1,2,3,7,8 ND 0.2 2,3,4,7,8 ND 0.2 **H6CDD - Total** 3.6 0.4 **H6CDF - Total** 1.3 0.4 1,2,3,4,7,8 ND 0.4 . 1,2,3,4,7,8 ND 0.4 1,2,3,6,7,8 0.5 0.4 1,2,3,6,7,8 ND 0.4 1,2,3,7,8,9 0.5 0.4 2,3,4,6,7,8 ND 0.4 ND 1,2,3,7,8,9 0.4 H7CDD - Total 13 0.6 **H7CDF - Total** 0.6 2.1 NDR(1.5) 1,2,3,4,6,7,8 6.5 0.6 1,2,3,4,6,7,8 0.6 1,2,3,4,7,8,9 ND 0.6 **O8CDD** - Total 62 1.0 **O8CDF** - Total 3.9 1.0

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	0.6 pg	a/g
13C-T4CDF	100		, .	
13C-T4CDD	88	2,3,7,8 - TCDD TEQs (ND=0) =	0.2 pg	g/g
13C-P5CDF	79			
13C-P5CDD	73			
13C-H6CDF	110			
13C-H6CDD	86			
13C-H7CDF	92			
13C-H7CDD	89			
13C-08CDD	79			

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Melan lon

AXYS FILE: 2607-04

METHOD NO .: DX-S-01/Ver.2

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

●※◎ AXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA V8L 358 TEL (250) 656-0881 FAX (250) 656-4511

CLIENT SAMPLE I.D.: VN9631

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 7.78 g dry

Xa Nham Soil (10 - 30 cm) Farmer's Field

% MOISTURE: 23

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	6.5	0.2	T4CDF - Total	ND	0.2
2,3,7,8	4.3	0.2	2,3,7,8	ND	0.2
P5CDD - Total	3.9	0.2	P5CDF - Total	ND	0.2
1,2,3,7,8	NDR(0.4)	0.2	1,2,3,7,8	ND	0.2
			2,3,4,7,8	ND	0.2
H6CDD - Total	6.6	0.4	H6CDF - Total	ND	0.4
1,2,3,4,7,8	ND	0.4	1,2,3,4,7,8	ND	0.4
1,2,3,6,7,8	0.5	0.4	1,2,3,6,7,8	ND	0.4
1,2,3,7,8,9	1.0	0.4	2,3,4,6,7,8	ND	0.4
			1,2,3,7,8,9	ND	0.4
H7CDD - Total	9.9	0.6	H7CDF - Total	ND	0.6
1,2,3,4,6,7,8	5.3	0.6	1,2,3,4,6,7,8	NDR(0.8)	0.6
			1,2,3,4,7,8,9	ND	0.6
O8CDD - Total	230	1.0	O8CDF - Total	ND	1.0

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	5.0 pg/g
13C-T4CDF	100		10.0
13C-T4CDD	88	2,3,7,8 - TCDD TEQs (ND=0) =	4.7 pg/g
13C-P5CDF	110		
13C-P5CDD	73		
13C-H6CDF	92		
13C-H6CDD	92		
13C-H7CDF	86		
13C-H7CDD	88		
13C-08CDD	90		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Mclametor

AXYS FILE: 2607-05

METHOD NO .: DX-S-01/Ver.2

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

Approved

CLIENT SAMPLE I.D.: VN9642

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 8.18 g dry

A So Soil (0 – 10 cm) Abandoned Airbase

% MOISTURE: 21

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	120	0.2	T4CDF - Total	11	0.2
2,3,7,8	110	0.2	2,3,7,8	3.6	0.2
P5CDD - Total	7.8	0.2	P5CDF - Total	8.8	0.2
1,2,3,7,8	1.1	0.2	1,2,3,7,8	0.4	0.2
			2,3,4,7,8	0.5	0.2
H6CDD - Total	13	0.4	H6CDF - Total	8.4	0.4
1,2,3,4,7,8	0.6	0.4	1,2,3,4,7,8	0.7	0.4
1,2,3,6,7,8	1.5	0.4	1,2,3,6,7,8	0.4	0.4
1,2,3,7,8,9	1.7	0.4	2,3,4,6,7,8	ND	0.4
			1,2,3,7,8,9	ND	0.4
H7CDD - Total	47	0.6	H7CDF - Total	28	0.6
1,2,3,4,6,7,8	27	0.6	1,2,3,4,6,7,8	7.8	0.6
			1,2,3,4,7,8,9	ND	0.6
O8CDD - Total	460	1.0	O8CDF - Total	36	1.0

Surrogate Standards	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) = 112.6 pg/s	g
13C-T4CDF	77		
13C-T4CDD	55	2,3,7,8 - TCDD TEQs (ND=0) = 112.5 pg/s	g
13C-P5CDF	66		
13C-P5CDD	61		
13C-H6CDF	76 ·		
13C-H6CDD	80		
13C-H7CDF	75		
13C-H7CDD	77		
13C-08CDD	57		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Approved

AXYS FILE: 2607-06

METHOD NO .: DX-S-01/Ver.2

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

CLIENT SAMPLE I.D.: VN9643

CLIENT: Hatfield Consultants Ltd.

Hong Van METHOD NO .: DX-S-01/Ver.2 SAMPLE TYPE: Sediment Soil (10 – 30 cm) SAMPLE SIZE: 8.14 g dry **INSTRUMENT: GC-HRMS** Farmer's Field % MOISTURE: 20 CONCENTRATION IN: pg/g

Dioxin s	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	6.9	0.2	T4CDF - Total	0.4	0.2
2,3,7,8	0.7	0.2	2,3,7,8	ND	0.2
P5CDD - Total	3.0	0.2	P5CDF - Total	ND	0.2
1,2,3,7,8	0.2	0.2	1,2,3,7,8	ND	0.2
			2,3,4,7,8	ND	0.2
H6CDD - Total	16	0.4	H6CDF - Total	ND	0.4
1,2,3,4,7,8	ND	0.4	1,2,3,4,7,8	ND	0.4
1,2,3,6,7,8	ND	0.4	1,2,3,6,7,8	ND	0.4
1,2,3,7,8,9	NDR(0.6)	0.4	2,3,4,6,7,8	ND	0.4
			1,2,3,7,8,9	ND	0.4
H7CDD - Total	42	0.6	H7CDF - Total	ND	0.6
1,2,3,4,6,7,8	18	0.6	1,2,3,4,6,7,8	ND	0.6
			1,2,3,4,7,8,9	ND	0.6
O8CDD - Totai	1700	1.0	O8CDF - Total	ND	1.0

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	2.9 pg/g
13C-T4CDF	100		10.0
13C-T4CDD	90	2,3,7,8 - TCDD TEQs (ND=0) =	2.7 pg/g
13C-P5CDF	82		
13C-P5CDD	85		
13C-H6CDF	95		
13C-H6CDD	84		
13C-H7CDF	90		
13C-H7CDD	89		
13C-08CDD	75		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

McLamelton

AXYS FILE: 2607-07

Approved

CLIENT SAMPLE I.D.: VN9645

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 7.94 g dry

Dong Ha Soil (0 – 10 cm) Abandoned Airbase

% MOISTURE: 23

Concentration (SDL) **Dioxins** Concentration (SDL) **Furans T4CDD - Total T4CDF - Total** 0.2 0.2 1.1 0.2 0.4 0.2 2,3,7,8 ND 0.2 2,3,7,8 P5CDD - Total P5CDF - Total 3.5 0.2 ND 0.2 ND 0.2 1,2,3,7,8 ND 0.2 1,2,3,7,8 0.2 2,3,4,7,8 0.3 0.4 H6CDF - Total 11 0.4 H6CDD - Total 9.2 1,2,3,4,7,8 0.7 0.4 1,2,3,4,7,8 0.7 0.4 0.5 0.4 1,2,3,6,7,8 1.6 0.4 1,2,3,6,7,8 2,3,4,6,7,8 0.4 0.4 1,2,3,7,8,9 1.4 0.4 1,2,3,7,8,9 ND 0.4 **H7CDD - Total** 0.6 H7CDF - Total 23 0.6 58 7.7 0.6 1,2,3,4,6,7,8 31 0.6 1,2,3,4,6,7,8 1,2,3,4,7,8,9 0.6 0.6 **O8CDD - Total** 1.0 **O8CDF** - Total 26 1.0 290

Surrogate Standards	% Recovery 2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)			
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	1.6 pg/g	
13C-T4CDF	110			
13C-T4CDD	96	2,3,7,8 - TCDD TEQs (ND=0) =	1.4 pg/g	
13C-P5CDF	94			
13C-P5CDD	100			
13C-H6CDF	88			
13C-H6CDD	95			
13C-H7CDF	73			
13C-H7CDD	77			
13C-08CDD	76			

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Malamilton

Approved

AXYS FILE: 2607-08

METHOD NO .: DX-S-01/Ver.2

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

CLIENT SAMPLE I.D.: VN9650 AXYS FILE: 2607-09 DATE: 13/Aug/97 CLIENT: Hatfield Consultants Ltd. SAMPLE TYPE: Sediment METHOD NO .: DX-S-01/Ver.2 A So A Sap River Sediment INSTRUMENT: GC-HRMS SAMPLE SIZE: 6.11 g dry % MOISTURE: 41 CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	0.8	0.2	T4CDF - Total	0.4	0.2
2,3,7,8	0.8	0.2	2,3,7,8	ND	0.2
P5CDD - Total	ND	0.2	P5CDF - Total	ND	0.2
1,2,3,7,8	ND	0.2	1,2,3,7,8	ND	0.2
			2,3,4,7,8	ND	0.2
H6CDD - Total	0.5	0.5	H6CDF - Total	ND	0.5
1,2,3,4,7,8	ND	0.5	1,2,3,4,7,8	ND	0.5
1,2,3,6,7,8	ND	0.5	1,2,3,6,7,8	ND	0.5
1,2,3,7,8,9	ND	0.5	2,3,4,6,7,8	ND	0.5
			1,2,3,7,8,9	ND	0.5
H7CDD - Total	3.6	0.8	H7CDF - Total	ND	0.8
1,2,3,4,6,7,8	1.5	0.8	1,2,3,4,6,7,8	ND	0.8
			1,2,3,4,7,8,9	ND	0.8
O8CDD - Total	69	1.3	O8CDF - Total	ND	1.3

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
			10
	•	2,3,7,8 · TCDD TEQs (ND=1/2 DL) =	1.2 pg/g
13C-T4CDF	77		
13C-T4CDD	90	2,3,7,8 - TCDD TEQs (ND=0) =	0.9 pg/g
13C-P5CDF	70		
13C-P5CDD	78		
13C-H6CDF	84		
13C-H6CDD	89		
13C-H7CDF	79		
13C-H7CDD	75		
13C-O8CDD	69		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Millamiltor Approved

CLIENT SAMPLE I.D.: VN9605

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment SAMPLE SIZE: 7.54 g dry

A Ngo Soil (0 – 10 cm) **Bomb Crater**

% MOISTURE: 25

Dioxins Concentration (SDL) **Furans** Concentration (SDL) T4CDD - Total 2.0 0.1 **T4CDF - Total** 0.8 0.1 2,3,7,8 1.1 0.1 2,3,7,8 ND 0.1 P5CDD - Total P5CDF - Total 0.5 0.1 0.1 0.1 1,2,3,7,8 ND 0.1 1.2.3.7.8 ND 0.1 2,3,4,7,8 0.1 0.1 H6CDD - Total 3.9 0.1 **H6CDF - Total** 0.5 0.1 1,2,3,4,7,8 ND 0.1 1,2,3,4,7,8 ND 0.1 1,2,3,6,7,8 0.4 0.1 1,2,3,6,7,8 0.1 0.1 1,2,3,7,8,9 0.8 0.1 2,3,4,6,7,8 0.1 0.1 1,2,3,7,8,9 ND 0.1 H7CDD - Total 26 0.1 H7CDF - Total 0.5 0.1 1,2,3,4,6,7,8 11 0.1 1,2,3,4,6,7,8 ND 0.1 1,2,3,4,7,8,9 ND 0.1 **O8CDD - Total** 830 0.5 **O8CDF** - Total 1.0 0.5

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	2.3 pg/g
13C-T4CDF	80		- 13/3
13C-T4CDD	87	2,3,7,8 - TCDD TEQs (ND=0) =	2.2 pg/g
13C-P5CDF	85		
13C-P5CDD	90		
13C-H6CDF	96		
13C-H6CDD	89		
13C-H7CDF	81		
13C-H7CDD	77		
13C-08CDD	66		•

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Mclamilton

AXYS FILE: 2607-10

METHOD NO .: DX-S-01/Ver.2

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

DATE: 05/Sep/97

Approved

CLIENT SAMPLE I.D.: VN9613

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: SedimentA NgoMETHOD NO.: DX-S-01/Ver.2SAMPLE SIZE: 7.88 g drySoil (10 - 30 cm)
Bomb CraterINSTRUMENT: GC-HRMS% MOISTURE: 23CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	1.2	0.1	T4CDF - Total	0.5	0.1
2,3,7,8	0.9	0.1	2,3,7,8	ND	0.1
P5CDD - Total	ND	0.1	P5CDF - Total	0.1	0.1
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	3.0	0.1	H6CDF - Total	0.2	0.1
1,2,3,4,7,8	ND	0.1	1,2,3,4,7,8	ND	0.1
1,2,3,6,7,8	0.3	0.1	1,2,3,6,7,8	ND	0.1
1,2,3,7,8,9	0.7	0.1	2,3,4,6,7,8	ND	0.1
			1,2,3,7,8,9	ND	0.1
H7CDD - Total	27	0.1	H7CDF - Total	0.5	0.1
1,2,3,4,6,7,8	11	0.1	1,2,3,4,6,7,8	ND	0.1
			1,2,3,4,7,8,9	ND	0.1
O8CDD - Total	950	0.5	O8CDF - Total	0.9	0.5

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	2.1	pg/g
13C-T4CDF	81			F 5/ 5
13C-T4CDD	83	2,3,7,8 - TCDD TEQs (ND=0) =	2.1	pg/g
13C-P5CDF	80			
13C-P5CDD	84			
13C-H6CDF	81			
13C-H6CDD	76			
13C-H7CDF	71			
13C-H7CDD	70			
13C-08CDD	72			

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Approved

AXYS FILE: 2607-11

DATE: 05/Sep/97

MAXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA V8L 3S8 TEL (250) 656-0881 FAX (250) 656-4511

CLIENT SAMPLE I.D.: VN9619

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 7.07 g dry

A Ngo Fish Pond Sediment

% MOISTURE: 32

CONCENTRATION IN: pg/g

AXYS FILE: 2607-12 A

METHOD NO .: DX-S-01/Ver.2

INSTRUMENT: GC-HRMS

DATE: 05/Sep/97

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	7.7	0.1	T4CDF - Total	0.8	0.1
2,3,7,8	5.3	0.1	2,3,7,8	0.2	0.1
P5CDD - Total	6.3	0.1	P5CDF - Total	ND	0.1
1,2,3,7,8	0.5	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	9.7	0.1	H6CDF - Total	0.3	0.1
1,2,3,4,7,8	ND	0.1	1,2,3,4,7,8	ND	0.1
1,2,3,6,7,8	0.4	0.1	1,2,3,6,7,8	ND	0.1
1,2,3,7,8,9	1.3	0.1	2,3,4,6,7,8	ND	0.1
			1,2,3,7,8,9	0.2	0.1
H7CDD - Total	35	0.1	H7CDF - Total	ND	0.1
1,2,3,4,6,7,8	15	0.1	1,2,3,4,6,7,8	ND	0.1
			1,2,3,4,7,8,9	ND	0.1
O8CDD - Total	880	0.6	O8CDF - Total	ND	0.6

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	6.8	pg/g
13C-T4CDF	74			10,0
13C-T4CDD	100	2,3,7,8 - TCDD TEQs (ND=0) =	6.8	pg/g
13C-P5CDF	78			
13C-P5CDD	87			
13C-H6CDF	75			
13C-H6CDD	76			
13C-H7CDF	72			
13C-H7CDD	67	<u>.</u>		
13C-08CDD	62			

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Approved

CLIENT SAMPLE I.D.: VN9619

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 6.59 g dry

A Ngo Fish Pond Sediment

% MOISTURE: 34

METHOD NO .: DX-S-01/Ver.2 INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

DATE: 05/Sep/97

AXYS FILE: 2607-12 B Duplicate

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	7.9	0.2	T4CDF - Total	0.7	0.2
2,3,7,8	5.1	0.2	2,3,7,8	0.2	0.2
P5CDD - Total	6.2	0.2	P5CDF - Total	ND	0.2
1,2,3,7,8	0.5	0.2	1,2,3,7,8	ND	0.2
			2,3,4,7,8	ND	0.2
H6CDD - Total	9.0	0.2	H6CDF - Total	0.2	0.2
1,2,3,4,7,8	ND	0.2	1,2,3,4,7,8	ND	0.2
1,2,3,6,7,8	0.3	0.2	1,2,3,6,7,8	ND	0.2
1,2,3,7,8,9	1.2	0.2	2,3,4,6,7,8	ND	0.2
			1,2,3,7,8,9	ND	0.2
H7CDD - Total	34	0.2	H7CDF - Total	ND	0.2
1,2,3,4,6,7,8	16	0.2	1,2,3,4,6,7,8	ND	0.2
			1,2,3,4,7,8,9	ND	0.2
O8CDD - Total	860	0.6	O8CDF - Total	ND	0.6

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	6.6	pg/g
13C-T4CDF	85			10.0
13C-T4CDD	85	2,3,7,8 - TCDD TEQs (ND=0) =	6.5	pg/g
13C-P5CDF	84			
13C-P5CDD	90			
13C-H6CDF	80			
13C-H6CDD	82			
13C-H7CDF	77			
13C-H7CDD	81			
13C-08CDD	74			

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

McKamilton

Approved

CLIENT SAMPLE I.D.: VN9635

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 7.89 g dry

Hong Ha Fish Pond Sediment

% MOISTURE: 23

Dioxins Concentration (SDL) **Furans** Concentration (SDL) T4CDD - Total 0.3 0.1 **T4CDF - Total** ND 0.1 2,3,7,8 0.3 0.1 ND 2,3,7,8 0.1 P5CDD - Total ND 0.1 P5CDF - Total ND 0.1 1,2,3,7,8 ND 0.1 1,2,3,7,8 ND 0.1 2,3,4,7,8 ND 0.1 H6CDD - Total 0.3 0.1 **H6CDF - Total** ND 0.1 ND 1,2,3,4,7,8 0.1 1,2,3,4,7,8 ND 0.1 1,2,3,6,7,8 ND 0.1 1,2,3,6,7,8 ND 0.1 1,2,3,7,8,9 0.2 0.1 2,3,4,6,7,8 ND 0.1 1,2,3,7,8,9 ND 0.1 H7CDD - Total 0.1 H7CDF - Total 0.1 0.1 1.1 1,2,3,4,6,7,8 0.6 0.1 1,2,3,4,6,7,8 0.1 0.1 1,2,3,4,7,8,9 ND 0.1 **O8CDD - Total** 18 **O8CDF** - Total 0.5 ND 0.5

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	0.4 pg/g
13C-T4CDF	85		
13C-T4CDD	86	2,3,7,8 - TCDD TEQs (ND=0) =	0.3 pg/g
13C-P5CDF	82		
13C-P5CDD	91		
13C-H6CDF	62		
13C-H6CDD	84		
13C-H7CDF	67		
13C-H7CDD	70		
13C-08CDD	58		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Medamilton

AXYS FILE: 2607-13

METHOD NO .: DX-S-01/Ver.2

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

DATE: 05/Sep/97

Approved

AXYS FILE: 2607-14 CLIENT SAMPLE I.D.: VN9636 **CLIENT: Hatfield Consultants Ltd.** DATE: 05/Sep/97 Chi Khe SAMPLE TYPE: Sediment METHOD NO .: DX-S-01/Ver.2 Soil (0 - 10 cm) Farmer's Field SAMPLE SIZE: 8.75 g dry **INSTRUMENT: GC-HRMS** (Reference) % MOISTURE: 14 CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	0.2	0.1	T4CDF - Total	1.1	0.1
2,3,7,8	ND	0.1	2,3,7,8	0.2	0.1
P5CDD - Total	ND	0.1	P5CDF - Total	0.1	0.1
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1
		•	2,3,4,7,8	ND	0.1
H6CDD - Total	1.8	0.1	H6CDF - Total	0.8	0.1
1,2,3,4,7,8	ND	0.1	1,2,3,4,7,8	ND	0.1
1,2,3,6,7,8	0.6	0.1	1,2,3,6,7,8	ND	0.1
1,2,3,7,8,9	1.2	0.1	2,3,4,6,7,8	ND	0.1
			1,2,3,7,8,9	0.7	0.1
H7CDD - Total	1.3	0.1	H7CDF - Total	ND	0.1
1,2,3,4,6,7,8	0.6	0.1	1,2,3,4,6,7,8	ND	0.1
			1,2,3,4,7,8,9	ND	0.1
O8CDD - Totai	13	0.5	O8CDF - Total	ND	0.5

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	0.4	pg/g
13C-T4CDF	64			
13C-T4CDD	88	2,3,7,8 - TCDD TEQs (ND=0) =	0.3	pg/g
13C-P5CDF	63			
13C-P5CDD	68			
13C-H6CDF	77			
13C-H6CDD	90			
13C-H7CDF	69			
13C-H7CDD	70			

53

1. SDL = Sample Detection Limit

2. ND = Not detected

13C-08CDD

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Approved

MI AXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA V8L 358 TEL (250) 656-0881 FAX (250) 656-4511

A Ngo

Manioc Root

CLIENT SAMPLE I.D.: VN9603

CLIENT: Hatfield Consultants

SAMPLE TYPE: Plant

AXYS FILE: 2607-15

DATE: 23/Sep/97 REVISED: 24/Sep/97 METHOD NO.: DX-T-03/Ver.2

SAMPLE SIZE: 10.9 g wet

% MOISTURE: 66

% LIPID: 0.11

CONCENTRATION IN: pg/g

INSTRUMENT: GC-HRMS

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	ND	0.1	T4CDF - Total	ND	0.1
2,3,7,8	ND	0.1	2,3,7,8	ND	0.1
P5CDD - Total	ND	0.1	P5CDF - Total	ND	0.1
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	ND	0.3	H6CDF - Total	ND	0.3
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	ND	0.3
1,2,3,6,7,8	ND	0.3	1,2,3,6,7,8	ND	0.3
1,2,3,7,8,9	ND	0.3	2,3,4,6,7,8	ND	0.3
			1,2,3,7,8,9	ND	0.3
H7CDD - Total	ND	0.5	H7CDF - Total	ND	0.5
1,2,3,4,6,7,8	ND	0.5	1,2,3,4,6,7,8	ND	0.5
			1,2,3,4,7,8,9	ND	0.5
O8CDD - Total	1.1	0.7	O8CDF - Total	ND	0.7

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)				
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	0.2 pg/g			
13C-T4CDF	82		10.0			
13C-T4CDD	84	2,3,7,8 - TCDD TEQs (ND=0) =	0.0 pg/g			
13C-P5CDF	69					
13C-P5CDD	74					
13C-H6CDF	85					
13C-H6CDD	84					
13C-H7CDF	81					
13C-H7CDD	83					
13C-08CDD	78					

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Medamilton

Approved

CLIENT SAMPLE I.D.: VN9614

CLIENT: Hatfield Consultants

SAMPLE TYPE: Tissue

A So Carp Liver

% LIPID: 4.0

AXYS FILE: 2607-16

DATE: 23/Sep/97 REVISED: 24/Sep/97 METHOD NO.: DX-T-03/Ver.2

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

SAMPLE SIZE: 10.4 g wet

% MOISTURE: 67

(SDL) Dioxins Concentration (SDL) **Furans** Concentration **T4CDD - Total** 3.0 0.1 **T4CDF - Total** 1.3 0.1 0.1 2,3,7,8 0.4 0.1 2,3,7,8 2.4 P5CDF - Total P5CDD - Total 0.4 0.1 0.4 0.1 ND 0.1 ND 0.1 1,2,3,7,8 1,2,3,7,8 2,3,4,7,8 ND 0.1 H6CDF - Total H6CDD - Total ND 0.3 ND 0.3 ND 0.3 1,2,3,4,7,8 ND 0.3 1,2,3,4,7,8 0.3 ND 1,2,3,6,7,8 ND 1,2,3,6,7,8 0.3 1,2,3,7,8,9 ND 0.3 2,3,4,6,7,8 ND 0.3 1,2,3,7,8,9 ND 0.3 H7CDD - Total ND 0.5 **H7CDF - Total** ND 0.5 1,2,3,4,6,7,8 ND 0.5 1,2,3,4,6,7,8 ND 0.5 1,2,3,4,7,8,9 ND 0.5 **O8CDD** - Total 0.8 ND ND **O8CDF** - Total 0.8

Surrogate Standards	% Recovery	ery 2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)				
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	2.6	pg/g		
13C-T4CDF	81			10.0		
13C-T4CDD	70	2,3,7,8 - TCDD TEQs (ND=0) =	2.4	pg/g		
13C-P5CDF	70					
13C-P5CDD	72					
13C-H6CDF	81					
13C-H6CDD	84					
13C-H7CDF	78					
13C-H7CDD	78					
13C-08CDD	71					

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Melamilton Approved

MO AXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA VOL 358 TEL (250) 656-0881 FAX (250) 656-4511

CLIENT SAMPLE I.D.: VN9618

CLIENT: Hatfield Consultants

SAMPLE TYPE: Tissue

A Ngo Carp Liver

SAMPLE SIZE: 10.3 g wet

% MOISTURE: 65

% LIPID: 8.5

ь.

DATE: 23/Sep/97

AXYS FILE: 2607-17 A

REVISED: 24/Sep/97 METHOD NO.: DX-T-03/Ver.2

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	1.5	0.1	T4CDF - Total	2.6	0.1
2,3,7,8	1.0	0.1	2,3,7,8	0.4	0.1
P5CDD - Total	0.4	0.1	P5CDF - Total	1.3	0.1
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	0.1	0.1
H6CDD - Total	ND	0.3	H6CDF - Totai	ND	0.3
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	ND	0.3
1,2,3,6,7,8	ND	0.3	1,2,3,6,7,8	ND	0.3
1,2,3,7,8,9	ND	0.3	2,3,4,6,7,8	ND	0.3
			1,2,3,7,8,9	ND	0.3
H7CDD - Total	ND	0.5	H7CDF - Total	ND	0.5
1,2,3,4,6,7,8	ND	0.5	1,2,3,4,6,7,8	ND	0.5
			1,2,3,4,7,8,9	ND	0.5
O8CDD - Total	1.0	0.8	O8CDF - Total	ND	0.8

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	1.2	pg/g
13C-T4CDF	91			
13C-T4CDD	98	2,3,7,8 - TCDD TEQs (ND=0) =	1.1	pg/g
13C-P5CDF	78			
13C-P5CDD	78			
13C-H6CDF	91			
13C-H6CDD	91			
13C-H7CDF	89			
13C-H7CDD	89			

93

1. SDL = Sample Detection Limit

2. ND = Not detected

13C-08CDD

3. NDR = Peak detected but did not meet quantification criteria

Medamilton

Approved

% LIPID: 8.1

CLIENT SAMPLE I.D.: VN9618

CLIENT: Hatfield Consultants

SAMPLE TYPE: Tissue

A Ngo Carp Liver

AXYS FILE: 2607-17 B Duplicate DATE: 23/Sep/97 REVISED: 24/Sep/97 METHOD NO .: DX-T-03/Ver.2 INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

SAMPLE SIZE: 10.2 g wet

% MOISTURE: 65

Dioxins	Concentration	(SDL)	Furans	. Concentration	(SDL)
T4CDD - Total	1.4	0.1	T4CDF - Total	2.8	0.1
2,3,7,8	0.8	0.1	2,3,7,8	0.3	0.1
P5CDD - Total	0.3	0.1	P5CDF - Total	1.1	0.1
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	0.1	0.1
H6CDD - Total	ND	0.3	H6CDF - Total	ND	0.3
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	ND	0.3
1,2,3,6,7,8	ND	0.3	1,2,3,6,7,8	ND	0.3
1,2,3,7,8,9	ND	0.3	2,3,4,6,7,8	ND	0.3
			1,2,3,7,8,9	ND	0.3
H7CDD - Total	ND	0.5	H7CDF - Total	ND	0.5
1,2,3,4,6,7,8	ND	0.5	1,2,3,4,6,7,8	ND	0.5
			1,2,3,4,7,8,9	ND	0.5
O8CDD - Total	0.9	0.8	O8CDF - Total	ND	0.8

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	1.0	pg/g
13C-T4CDF	86			
13C-T4CDD	91	2,3,7,8 - TCDD TEQs (ND=0) =	0.9	pg/g
13C-P5CDF	78			
13C-P5CDD	78			
13C-H6CDF	83			
13C-H6CDD	79			
13C-H7CDF	75			
13C-H7CDD	74			

69

1. SDL = Sample Detection Limit

2. ND = Not detected

13C-08CDD

3. NDR = Peak detected but did not meet quantification criteria

Melamilton Approved

CLIENT SAMPLE I.D.: VN9620

AXYS FILE: 2607-18

CLIENT: Hatfield Consultants	Hong Thuong	DATE: 23/Sep/97 REVISED: 24/Sep/97
SAMPLE TYPE: Tissue	Carp Liver	METHOD NO.: DX-T-03/Ver.2
SAMPLE SIZE: 10.7 g wet		INSTRUMENT: GC-HRMS
% MOISTURE: 76	% LIPID: 3.2	CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	1.6	0.1	T4CDF - Total	1.1	0.1
2,3,7,8	1.6	0.1	2,3,7,8	0.7	0.1
P5CDD - Total	ND	0.1	P5CDF - Total	0.9	0.1
1,2,3,7,8	NDR(0.2)	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	0.2	0.1
H6CDD - Total	ND	0.3	H6CDF - Total	ND	0.3
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	ND	0.3
1,2,3,6,7,8	ND	0.3	1,2,3,6,7,8	ND	0.3
1,2,3,7,8,9	ND	0.3	2,3,4,6,7,8	ND	0.3
			1,2,3,7,8,9	ND	0.3
H7CDD - Total	ND	0.5	H7CDF - Total	ND	0.5
1,2,3,4,6,7,8	ND	0.5	1,2,3,4,6,7,8	ND	0.5
			1,2,3,4,7,8,9	ND	0.5
O8CDD - Total	1.6	0.7	O8CDF - Total	ND	0.7

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	1.9 pg/g
13C-T4CDF	76		10.0
13C-T4CDD	82	2,3,7,8 - TCDD TEQs (ND=0) =	1.8 pg/g
13C-P5CDF	66		
13C-P5CDD	67		
13C-H6CDF	71		
13C-H6CDD	76		
13C-H7CDF	67		
13C-H7CDD	63		

48

1. SDL = Sample Detection Limit

2. ND = Not detected

13C-08CDD

3. NDR = Peak detected but did not meet quantification criteria

McKamilton

Approved

CLIENT SAMPLE I.D.: VN9621

AXYS FILE: 2607-19

CLIENT: Hatfield Consultants SAMPLE TYPE: Tissue	Con Cuong Carp Liver	DATE: 23/Sep/97 REVISED: 24/Sep/97 METHOD NO.: DX-T-03/Ver.2
SAMPLE SIZE: 9.88 g wet	(Reference)	INSTRUMENT: GC-HRMS
% MOISTURE: 79	% LIPID: 1.6	CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	0.1	0.1	T4CDF - Total	0.4	0.1
2,3,7,8	ND	` 0.1	2,3,7,8	0.2	0.1
P5CDD - Total	ND	0.1	P5CDF - Total	0.3	0.1
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	ND	0.3	H6CDF - Total	ND	0.3
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	ND	0.3
1,2,3,6,7,8	ND	0.3	1,2,3,6,7,8	ND	0.3
1,2,3,7,8,9	ND	0.3	2,3,4,6,7,8	ND	0.3
			1,2,3,7,8,9	ND	0.3
H7CDD - Total	ND	0.5	H7CDF - Total	ND	0.5
1,2,3,4,6,7,8	ND	0.5	1,2,3,4,6,7,8	ND	0.5
			1,2,3,4,7,8,9	ND	0.5
O8CDD - Total	ND	0.8	O8CDF - Total	ND	0.8

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	0.2	pg/g
13C-T4CDF	79			10.0
13C-T4CDD	83	2,3,7,8 - TCDD TEQs (ND=0) =	0.0	pg/g
13C-P5CDF	69			
13C-P5CDD	69			
13C-H6CDF	89			
13C-H6CDD	84			
13C-H7CDF	78			
13C-H7CDD	74			

69

1. SDL = Sample Detection Limit

2. ND = Not detected

13C-08CDD

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Mellamilton

Approved

(250) 656-0881 FAX (250) 656-0881 FAX (250) 656-0881 FAX (250) 656-0881 FAX (250) 656-4511

CLIENT SAMPLE I.D.: VN9623

CLIENT: Hatfield Consultants

AXYS FILE: 2607-20

DATE: 23/Sep/97 REVISED: 24/Sep/97 METHOD NO.: DX-T-03/Ver.2

SAMPLE SIZE: 10.3 g wet

SAMPLE TYPE: Tissue

% MOISTURE: 69

% LIPID: 5.6

Hong Ha

Carp Liver

CONCENTRATION IN: pg/g

INSTRUMENT: GC-HRMS

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)	
T4CDD - Totai	0.6	0.1	T4CDF - Total	. 1.1	0.1	
2,3,7,8	0.3	0.1	2,3,7,8	0.3	0.1	
P5CDD - Total	ND	0.1	P5CDF - Total	1.6	0.1	
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1	
			2,3,4,7,8	0.1	0.1	
H6CDD - Total	1.6	0.3	H6CDF - Total	1.1	0.3	
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	ND	0.3	
1,2,3,6,7,8	ND	0.3	1,2,3,6,7,8	ND	0.3	
1,2,3,7,8,9	ND	0.3	2,3,4,6,7,8	ND	0.3	
		,	1,2,3,7,8,9	ND	0.3	
H7CDD - Total	3.9	0.5	H7CDF - Total	0.6	0.5	
1,2,3,4,6,7,8	1.5	0.5	1,2,3,4,6,7,8	ND	0.5	
			1,2,3,4,7,8,9	ND	0.5	
O8CDD - Total	4.0	0.8	O8CDF - Total	ND	0.8	

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND= 1/2 DL) =	0.5	pg/g
13C-T4CDF	67			
13C-T4CDD	57	2,3,7,8 - TCDD TEQs (ND=0) =	0.4	pg/g
13C-P5CDF	59			
13C-P5CDD	61			
13C-H6CDF	71			
13C-H6CDD	71			
13C-H7CDF	66			
13C-H7CDD	59			

49

1. SDL = Sample Detection Limit

2. ND = Not detected

13C-08CDD

3. NDR = Peak detected but did not meet quantification criteria

Maniton

Approved

CLIENT SAMPLE I.D.: VN9629

CLIENT: Hatfield Consultants		DATE: 26/Sep/97
SAMPLE TYPE: Tissue	Son Thuy Pig Liver	METHOD NO.: DX-T-03/Ver.2
SAMPLE SIZE: 10.1 g wet		INSTRUMENT: GC-HRMS
% MOISTURE: 62	% LIPID: 3.0	CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	ND	0.1	T4CDF - Total	ND	0.1
2,3,7,8	ND	0.1	2,3,7,8	ND	0.1
P5CDD - Total	ND	0.1	P5CDF - Total	0.6	0.1
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	0.6	0.1
H6CDD - Total	0.4	0.3	H6CDF - Total	3.4	0.3
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	1.7	0.3
1,2,3,6,7,8	0.4	0.3	1,2,3,6,7,8	1.1	0.3
1,2,3,7,8,9	ND	0.3	2,3,4,6,7,8	0.6	0.3
			1,2,3,7,8,9	ND	0.3
H7CDD - Total	17	0.5	H7CDF - Total	7.2	0.5
1,2,3,4,6,7,8	16	0.5	1,2,3,4,6,7,8	6.4	0.5
			1,2,3,4,7,8,9	0.8	0.5
O8CDD - Total	300	0.8	O8CDF - Total	2.7	0.8

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	1.3 pg/g
13C-T4CDF	74		1.0 pg/g
13C-T4CDD	76	2,3,7,8 - TCDD TEQs (ND=0) =	1.2 pg/g
13C-P5CDF	61		
13C-P5CDD	61		
13C-H6CDF	72		
13C-H6CDD	71		
13C-H7CDF	61		
13C-H7CDD	55	•	
13C-08CDD	55		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Malimitor

AXYS FILE: 2607-21

Approved

CLIENT SAMPLE I.D.: VN9640

CLIENT: Hatfield Consultants		DATE: 26/Sep/97
SAMPLE TYPE: Tissue	Xa Nham Carp Fat	METHOD NO.: DX-T-03/Ver.2
SAMPLE SIZE: 2.57 g wet		INSTRUMENT: GC-HRMS
% MOISTURE: 11	% LIPID: 85	CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)	
T4CDD - Total	2.3	0.4	T4CDF - Total	9.2	0.4	
2,3,7,8	0.7	0.4	2,3,7,8	1.2	0.4	
P5CDD - Total	ND	0.4	P5CDF - Total	1.7	0.4	
1,2,3,7,8	ND	0.4	1,2,3,7,8	0.4	0.4	
			2,3,4,7,8	ND	0.4	
H6CDD - Total	ND	1.2	H6CDF - Total	ND	1.2	
1,2,3,4,7,8	ND	1.2	1,2,3,4,7,8	ND	1.2	
1,2,3,6,7,8	ND	1.2	1,2,3,6,7,8	ND	1.2	
1,2,3,7,8,9	ND	1.2	2,3,4,6,7,8	ND	1.2	
			1,2,3,7,8,9	ND	1.2	
H7CDD - Total	ND	1.9	H7CDF - Total	ND	1.9	
1,2,3,4,6,7,8	ND	1.9	1,2,3,4,6,7,8	ND	1.9	
			1,2,3,4,7,8,9	ND	1.9	
O8CDD - Total	5.1	3.1	O8CDF - Total	ND	3.1	

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	1.5	pg/g
13C-T4CDF	75			10.0
13C-T4CDD	79	2,3,7,8 - TCDD TEQs (ND=0) =	0.8	pg/g
13C-P5CDF	66			
13C-P5CDD	64			
13C-H6CDF	72			
13C-H6CDD	71			
13C-H7CDF	70			
13C-H7CDD	61			
13C-08CDD	52			

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Uklamilton Approved

AXYS FILE: 2607-22

CLIENT SAMPLE I.D.: VN9646	,	AXYS FILE: 2607-23
CLIENT: Hatfield Consultants	A So	DATE: 26/Sep/97
SAMPLE TYPE: Tissue	Carp Fat	METHOD NO.: DX-T-03/Ver.2
SAMPLE SIZE: 2.58 g wet		INSTRUMENT: GC-HRMS
% MOISTURE: 7.6	% LIPID: 87	CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	59	0.4	T4CDF - Total	25	0.4
2,3,7,8	51	0.4	2,3,7,8	6.6	0.4
P5CDD - Total	2.4	0.4	P5CDF - Total	12	0.4
1,2,3,7,8	1.9	0.4	1,2,3,7,8	0.9	0.4
			2,3,4,7,8	1.2	0.4
H6CDD - Total	ND	1.2	H6CDF - Total	ND	1.2
1,2,3,4,7,8	ND	1.2	1,2,3,4,7,8	ND	1.2
1,2,3,6,7,8	ND	1.2	1,2,3,6,7,8	ND	1.2
1,2,3,7,8,9	ND	1.2	2,3,4,6,7,8	ND	1.2
			1,2,3,7,8,9	ND	1.2
H7CDD - Total	ND	1.9	H7CDF - Total	ND	1.9
1,2,3,4,6,7,8	ND	1.9	1,2,3,4,6,7,8	ND	1.9
			1,2,3,4,7,8,9	ND	1.9
O8CDD - Total	ND	3.1	O8CDF - Total	ND	3.1

Surrogate Standards	% Recovery 2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)				
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) = 53.7 pg/	/a		
13C-T4CDF	94		9		
13C-T4CDD	100	2,3,7,8 - TCDD TEQs (ND=0) = 53.3 pg/	/g		
13C-P5CDF	84				
13C-P5CDD	84				
13C-H6CDF	89				
13C-H6CDD	90				
13C-H7CDF	69				
13C-H7CDD	76				
13C-08CDD	68				

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

Malamilt.

CLIENT SAMPLE I.D.: VN9606

DATE: 26/Sep/97 **CLIENT: Hatfield Consultants Hong Thuong** METHOD NO.: DX-T-03/Ver.2 SAMPLE TYPE: Tissue Manioc Root SAMPLE SIZE: 10.7 g wet INSTRUMENT: GC-HRMS % MOISTURE: 54 % LIPID: 0.19 CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	ND	0.1	T4CDF - Total	ND	0.1
2,3,7,8	· ND	0.1	2,3,7,8	ND	0.1
P5CDD - Total	ND	0.1	P5CDF - Total	ND	0.1
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	ND	0.3	H6CDF - Total	ND	0.3
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	ND	0.3
1,2,3,6,7,8	ND	0.3	1,2,3,6,7,8	ND	0.3
1,2,3,7,8,9	ND	0.3	2,3,4,6,7,8	ND	0.3
			1,2,3,7,8,9	ND	0.3
H7CDD - Total	ND	0.5	H7CDF - Total	ND	0.5
1,2,3,4,6,7,8	ND	0.5	1,2,3,4,6,7,8	ND	0.5
			1,2,3,4,7,8,9	ND	0.5
O8CDD - Total	ND	0.8	O8CDF - Total	ND	0.8

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	0.2 pg/g
13C-T4CDF	66		
13C-T4CDD	68	2,3,7,8 - TCDD TEQs (ND=0) =	0.0 pg/g
13C-P5CDF	60		
13C-P5CDD	64		
13C-H6CDF	67		
13C-H6CDD	67		
13C-H7CDF	55		
13C-H7CDD	55		
13C-08CDD	45		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

McChmilton

AXYS FILE: 2607-24 A

Approved

Hong Thuong

Manioc Root

% LIPID: 0.17

CLIENT SAMPLE I.D.: VN9606

CLIENT: Hatfield Consultants

SAMPLE TYPE: Tissue

Duplicate DATE: 26/Sep/97 METHOD NO .: DX-T-03/Ver.2

AXYS FILE: 2607-24 B

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

SAMPLE SIZE: 10.4 g wet

% MOISTURE: 55

Dioxins Concentration (SDL) Furans Concentration (SDL) T4CDD - Total ND 0.1 **T4CDF - Total** ND 0.1 2,3,7,8 ND 0.1 2,3,7,8 ND 0.1 P5CDD - Total ND 0.1 **P5CDF - Total** ND 0.1 1,2,3,7,8 ND 0.1 1,2,3,7,8 ND 0.1 2,3,4,7,8 ND 0.1 H6CDD - Total ND 0.3 **H6CDF - Total** ND 0.3 ND 0.3 1,2,3,4,7,8 ND 0.3 1,2,3,4,7,8 ND 1,2,3,6,7,8 0.3 ND 0.3 1,2,3,6,7,8 1,2,3,7,8,9 ND 0.3 2,3,4,6,7,8 ND 0.3 1,2,3,7,8,9 ND 0.3 **H7CDD - Total** ND 0.5 **H7CDF - Total** ND 0.5 1,2,3,4,6,7,8 ND 0.5 1,2,3,4,6,7,8 ND 0.5 1,2,3,4,7,8,9 ND 0.5 **O8CDD - Total** ND 0.8 **O8CDF** - Total ND 0.8

Surrogate Standards % Recovery		2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	0.2 pg/g
13C-T4CDF	79		F9,9
13C-T4CDD	84	2,3,7,8 - TCDD TEQs (ND=0) =	0.0 pg/g
13C-P5CDF	70		
13C-P5CDD	75		
13C-H6CDF	77		
13C-H6CDD	77		
13C-H7CDF	62		
13C-H7CDD	71		
13C-08CDD	56		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Hamila

Approve

MAXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA V8L 358 TEL (250) 656-0881 FAX (250) 656-4511

A So

Duck Liver

% LIPID: 2.2

CLIENT SAMPLE I.D.: VN9608

CLIENT: Hatfield Consultants

SAMPLE TYPE: Tissue

SAMPLE SIZE: 10.1 g wet

DATE: 26/Sep/97 METHOD NO .: DX-T-03/Ver.2

AXYS FILE: 2607-25

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

% MOISTURE: 67

O8CDD - Total

Dioxins Concentration (SDL) Furans Concentration (SDL) T4CDD - Total 0.1 **T4CDF - Total** 0.2 0.1 1.4 2,3,7,8 1.4 0.1 2,3,7,8 0.2 0.1 P5CDD - Total ND **P5CDF - Total** ND 0.1 0.1 1,2,3,7,8 ND 0.1 1,2,3,7,8 ND 0.1 2,3,4,7,8 ND 0.1 H6CDF - Total H6CDD - Total ND 0.3 ND 0.3 1,2,3,4,7,8 ND 0.3 1,2,3,4,7,8 ND 0.3 ND ND 0.3 1,2,3,6,7,8 0.3 1,2,3,6,7,8 ND 1,2,3,7,8,9 ND 0.3 2,3,4,6,7,8 0.3 1,2,3,7,8,9 ND 0.3 H7CDF - Total H7CDD - Total ND 0.5 ND 0.5 1,2,3,4,6,7,8 ND 0.5 1,2,3,4,6,7,8 ND 0.5 ND 0.5 1,2,3,4,7,8,9

O8CDF - Total

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	16	pg/g
13C-T4CDF	83		1.0	P9/9
13C-T4CDD	93	2,3,7,8 - TCDD TEQs (ND=0) =	1.4	pg/g
13C-P5CDF	81			
13C-P5CDD	86			
13C-H6CDF	82			
13C-H6CDD	81			
13C-H7CDF	72			
13C-H7CDD	75			

1. SDL = Sample Detection Limit

2. ND = Not detected

13C-08CDD

3. NDR = Peak detected but did not meet quantification criteria

ND

0.8

74

4. Concentrations are recovery corrected.

Approved Manulton,

ND

0.8

CLIENT SAMPLE I.D.: VN9641

CLIENT: Hatfield Consultants	Con Cuong	DATE: 26/Sep/97
SAMPLE TYPE: Tissue	Pig Liver (Reference)	METHOD NO.: DX-T-03/Ver.2
SAMPLE SIZE: 10.0 g wet		INSTRUMENT: GC-HRMS
% MOISTURE: 70	% LIPID: 3.3	CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans .	Concentration	(SDL)
T4CDD - Total	ND	0.1	T4CDF - Total	ND	0.1
2,3,7,8	ND	0.1	2,3,7,8	ND	0.1
P5CDD - Total	ND	0.1	P5CDF - Total	ND	0.1
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	ND	0.3	H6CDF - Total	ND	0.3
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	ND	0.3
1,2,3,6,7,8	ND	0.3	1,2,3,6,7,8	ND	0.3
1,2,3,7,8,9	ND	0.3	2,3,4,6,7,8	ND	0.3
			1,2,3,7,8,9	ND	0.3
H7CDD - Total	1.2	0.5	H7CDF - Total	ND	0.5
1,2,3,4,6,7,8	0.7	0.5	1,2,3,4,6,7,8	ND	0.5
			1,2,3,4,7,8,9	ND	0.5
O8CDD - Total	4.1	0.8	O8CDF - Total	ND	0.8

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	02	pg/g
13C-T4CDF	61		0.2	pgrg
13C-T4CDD	59	2,3,7,8 - TCDD TEQs (ND=0) =	0.0	pg/g
13C-P5CDF	64			
13C-P5CDD	67			
13C-H6CDF	81			
13C-H6CDD	76			
13C-H7CDF	71			
13C-H7CDD	62			
13C-08CDD	54			

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Walamilton

AXYS FILE: 2607-26

Approved

CLIENT SAMPLE J.D.: VN9644

CLIENT: Hatfield Consultants	Con Cuong	DATE: 26/Sep/97
SAMPLE TYPE: Tissue	Duck Liver (Reference)	METHOD NO.: DX-T-03/Ver.2
SAMPLE SIZE: 10.2 g wet	(101010100)	INSTRUMENT: GC-HRMS
% MOISTURE: 66	% LIPID: 3.7	CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	ND	0.1	T4CDF - Total	0.4	0.1
2,3,7,8	ND	0.1	2,3,7,8	0.2	0.1
P5CDD - Total	ND	0.1	P5CDF - Total	ND	0.1
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	ND	0.3	H6CDF - Total	ND	0.3
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	ND	0.3
1,2,3,6,7,8	ND	0.3	1,2,3,6,7,8	ND	0.3
1,2,3,7,8,9	ND	0.3	2,3,4,6,7,8	ND	0.3
			1,2,3,7,8,9	ND	0.3
H7CDD - Total	ND	0.5	H7CDF - Total	ND	0.5
1,2,3,4,6,7,8	ND	0.5	1,2,3,4,6,7,8	ND	0.5
			1,2,3,4,7,8,9	ND	0.5
O8CDD - Totai	ND	0.8	O8CDF - Totai	ND	0.8

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	0.2	pg/g
13C-T4CDF	78			
13C-T4CDD	86	2,3,7,8 - TCDD TEQs (ND=0) =	0.0	pg/g
13C-P5CDF	84			
13C-P5CDD	87			
13C-H6CDF	79			
13C-H6CDD	78			
13C-H7CDF	76			
13C-H7CDD	70			
13C-08CDD	64			

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Mesamilton

AXYS FILE: 2607-27

Approved

 CLIENT SAMPLE I.D.: VN9602
 AXYS FILE: 2607-29

 CLIENT: Hatfield Consultants
 DATE: 14/Oct/97

 SAMPLE TYPE: Sediment
 METHOD NO.: DX-S-01/Ver.3

 SAMPLE SIZE: 7.09 g dry
 Fish Pond Sediment
 INSTRUMENT: GC-HRMS

 % MOISTURE: 30
 CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	9.5	0.1	T4CDF - Total	1.7	0.1
2,3,7,8	6.9	0.1	2,3,7,8	0.6	0.1
P5CDD - Total	3.1	0.1	P5CDF - Total	1.4	0.2
1,2,3,7,8	NDR(0.4)	0.1	1,2,3,7,8	ND	0.2
			2,3,4,7,8	ND	0.2
H6CDD - Total	9.1	0.3	H6CDF - Total	0.5	0.3
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	ND	0.3
1,2,3,6,7,8	0.3	0.3	1,2,3,6,7,8	ND	0.3
1,2,3,7,8,9	0.7	0.3	2,3,4,6,7,8	ND	0.3
			1,2,3,7,8,9	ND	0.3
H7CDD - Totai	19	0.4	H7CDF - Total	0.8	0.4
1,2,3,4,6,7,8	7.9	0.4	1,2,3,4,6,7,8	0.8	0.4
			1,2,3,4,7,8,9	ND	0.4
O8CDD - Total	460	2.6	O8CDF - Total	1.2	0.7

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
			/
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	7.8 pg/g
13C-T4CDF	79		
13C-T4CDD	76	2,3,7,8 - TCDD TEQs (ND=0) =	7.6 pg/g
13C-P5CDF	76		
13C-P5CDD	79		
13C-H6CDF	86		
13C-H6CDD	73		
13C-H7CDF	71		
13C-H7CDD	61		
13C-08CDD	59		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Hamilh

🕅 AXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA V8L 3S8 TEL (250) 656-0881 FAX (250) 656-4511

CLIENT SAMPLE I.D.: Spiked Matrix

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 10.0 g

AXYS FILE: DX-S-SPM 823 DATE: 13/Aug/97 METHOD NO.: DX-S-01/Ver.2 INSTRUMENT: GC-HRMS CONCENTRATION IN: pg/g

Dioxins	Determined	Expected	% Recovery	Furans	Determined	Expected	% Recovery
T4CDD - Total				T4CDF - Total		•	
2,3,7,8	1.7	1.8	94	2,3,7,8	1.8	1.9	95
P5CDD - Total				P5CDF - Total			
1,2,3,7,8	5.0	5.0	100	1,2,3,7,8	4.6	4.6	100
				2,3,4,7,8	4.6	4.6	100
H6CDD - Total				H6CDF - Total			
1,2,3,4,7,8	5.0	5.4	93	1,2,3,4,7,8	4.6	4.6	100
1,2,3,6,7,8	4.7	5.0	94	1,2,3,6,7,8	4.5	4.6	98
1,2,3,7,8,9	3.4	5.2	65	2,3,4,6,7,8	4.0	4.6	87
-				1,2,3,7,8,9	3.2	4.6	70
H7CDD - Total				H7CDF - Total			
1,2,3,4,6,7,8	5.0	5.5	91	1,2,3,4,6,7,8	4.9	5.0	98
				1,2,3,4,7,8,9	4.4	4.6	96
O8CDD - Total	15	14	107	O8CDF - Total	9.5	7.9	120

Surrogate Standards	% Recovery		
3			
13C-T4CDF	47		
13C-T4CDD	44		
13C-P5CDF	36		
13C-P5CDD	36		
13C-H6CDF	41		
13C-H6CDD	36		
13C-H7CDF	29		
13C-H7CDD	20		
13C-08CDD	13		

Approved

CLIENT SAMPLE I.D.: Spiked Matrix

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 10.0 g

AXYS FILE: DX-S-SPM 840 DATE: 05/Sep/97 METHOD NO.: DX-S-01/Ver.2 INSTRUMENT: GC-HRMS CONCENTRATION IN: pg/g

Dioxins	Determined	Expected	% Recovery	Furans	Determined	Expected	% Recovery
T4CDD - Total				T4CDF - Total			
2,3,7,8	19	18	106	2,3,7,8	19	20	95
P5CDD - Total				P5CDF - Total			
1,2,3,7,8	53	50	106	1,2,3,7,8	48	46	104
				2,3,4,7,8	51	46	111
H6CDD - Total				H6CDF - Total			
1,2,3,4,7,8	51	54	94	1,2,3,4,7,8	49	46	107
1,2,3,6,7,8	49	50	98	1,2,3,6,7,8	51	46	111
1,2,3,7,8,9	56	52	108	2,3,4,6,7,8	52	46	113
				1,2,3,7,8,9	64	46	139
H7CDD - Total				H7CDF - Total			
1,2,3,4,6,7,8	52	55	95	1,2,3,4,6,7,8	52	66	79
				1,2,3,4,7,8,9	53	46	115
O8CDD - Total	137	140	98	O8CDF - Total	76	78	97

Surrogate Standards	% Recovery
13C-T4CDF	75
13C-T4CDD	85
13C-P5CDF	71
13C-P5CDD	78
13C-H6CDF	63
13C-H6CDD	77
13C-H7CDF	70
13C-H7CDD	71
13C-08CDD	62

Approved

CLIENT SAMPLE I.D.: Spiked Matrix

CLIENT: Hatfield Consultants

SAMPLE TYPE: Tissue

SAMPLE SIZE: 10.0 g

AXYS FILE: DX-T-SPM 845

DATE: 23/Sep/97 REVISED: 24/Sep/97 METHOD NO.: DX-T-03/Ver.2

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

Dioxins	Determined	Expected	% Recovery	Furans	Determined	Expected	% Recovery
T4CDD - Total				T4CDF - Total			
2,3,7,8	1.8	1.8	100	2,3,7,8	4.4	4.4	100
P5CDD - Total				P5CDF - Total			
1,2,3,7,8	5.9	5.0	118	1,2,3,7,8	4.9	4.6	107
				2,3,4,7,8	5.2	4.6	113
H6CDD - Total				H6CDF - Total			
1,2,3,4,7,8	5.1	5.4	94	1,2,3,4,7,8	4.8	4.6	104
1,2,3,6,7,8	5.7	5.0	114	1,2,3,6,7,8	5.0	4.6	109
1,2,3,7,8,9	4.8	5.2	92	2,3,4,6,7,8	4.3	4.6	93
				1,2,3,7,8,9	3.6	4.6	78
H7CDD - Total				H7CDF - Total			
1,2,3,4,6,7,8	4.4	4.4	100	1,2,3,4,6,7,8	4.8	4.6	104
				1,2,3,4,7,8,9	4.2	4.6	91
O8CDD - Total	7.5	7.4	. 101	O8CDF - Total	8.1	7.4	109
			(

Surrogate Standards

% Recovery

66
49
74
75
81
78
68
59
47

1. Concentrations are recovery corrected.

Approved

CLIENT SAMPLE I.D.: Spiked Matrix

CLIENT: Hatfield Consultants

SAMPLE TYPE: Tissue

SAMPLE SIZE: 10.0 g

AXYS FILE: DX-T-SPM 847 DATE: 26/Sep/97 METHOD NO.: DX-T-03/Ver.2 INSTRUMENT: GC-HRMS CONCENTRATION IN: pg/g

Dioxins	Determined	Expected	% Recovery	Furans	Determined	Expected	% Recovery
T4CDD - Total				T4CDF - Total			
2,3,7,8	2.0	1.8	111	2,3,7,8	4.8	4.4	109
P5CDD - Total				P5CDF - Total			
1,2,3,7,8	5. 9	5.0	118	1,2,3,7,8	5.2	4.6	113
				2,3,4,7,8	5.4	4.6	117
H6CDD - Total				H6CDF - Total			
1,2,3,4,7,8	5.0	5.4	93	1,2,3,4,7,8	5.1	4.6	111
1,2,3,6,7,8	5.7	5.0	114	1,2,3,6,7,8	5.0	4.6	109
1,2,3,7,8,9	5.5	5.2	106	2,3,4,6,7,8	4.5	4.6	98
				1,2,3,7,8,9	4.8	4.6	104
H7CDD - Total				H7CDF - Total			
1,2,3,4,6,7,8	4.4	4.4	100	1,2,3,4,6,7,8	4.9	4.6	107
· · · · · · · ·				1,2,3,4,7,8,9	5.3	4.6	115
O8CDD - Total	7.4	7.4	100	O8CDF - Total	7.8	7.4	105

Surrogate Standards	% Recovery		
13C-T4CDF	85		
13C-T4CDD	90		
13C-P5CDF	81		
13C-P5CDD	87		
13C-H6CDF	90		
13C-H6CDD	87		
13C-H7CDF	76		
13C-H7CDD	74		
13C-08CDD	74		

Mexamilton Approved

CLIENT SAMPLE I.D.: Spiked Matrix

CLIENT: Hatfield Consultants

SAMPLE TYPE: Sediment

SAMPLE SIZE: 10.0 g

AXYS FILE: DX-S-SPM 858 DATE: 14/Oct/97 METHOD NO.: DX-S-01/Ver.3 INSTRUMENT: GC-HRMS CONCENTRATION IN: pg/g

Dioxins	Determined	Expected	% Recovery	Furans	Determined	Expected	% Recovery
T4CDD - Totai				T4CDF - Total			
2,3,7,8	2.0	1.8	111	2,3,7,8	1.9	2.0	95
P5CDD - Total				P5CDF - Total			
1,2,3,7,8	5.7	5.0	114	1,2,3,7,8	5.0	4.6	109
				2,3,4,7,8	5.0	4.6	109
H6CDD - Total				H6CDF - Total			
1,2,3,4,7,8	5.3	5.4	98	1,2,3,4,7,8	5.2	4.6	113
1,2,3,6,7,8	5.1	5.0	102	1,2,3,6,7,8	5.3	4.6	115
1,2,3,7,8,9	5.5	5.2	106	2,3,4,6,7,8	4.5	4.6	98
				1,2,3,7,8,9	4.8	4.6	104
H7CDD - Total				H7CDF - Total			
1,2,3,4,6,7,8	4.7	5.5	85	1,2,3,4,6,7,8	5.2	6.6	79
				1,2,3,4,7,8,9	4.8	4.6	104
O8CDD - Total	11	14	79	O8CDF - Total	7.9	7.8	101

Surrogate	Standards	%
-----------	-----------	---

Recovery

13C-T4CDF	73
13C-T4CDD	78
13C-P5CDF	70
13C-P5CDD	74
13C-H6CDF	82
13C-H6CDD	79
13C-H7CDF	82
13C-H7CDD	75
13C-08CDD	69

Approved

CLIENT SAMPLE I.D.: Procedural Blank

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Blank

SAMPLE SIZE: 10.0 g

AXYS FILE: DX-S-BLK 1618 DATE: 13/Aug/97

METHOD NO .: DX-S-01/Ver.2

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	ND	0.1	T4CDF - Total	ND	0.1
2,3,7,8	ND	0.1	2,3,7,8	ND	0.1
P5CDD - Total	ND	0.1	P5CDF - Total	ND	0.1
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	ND	0.3	H6CDF - Total	ND	0.3
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	ND	0.3
1,2,3,6,7,8	ND	0.3	1,2,3,6,7,8	ND	0.3
1,2,3,7,8,9	ND	0.3	2,3,4,6,7,8	ND	0.3
,			1,2,3,7,8,9	ND	0.3
H7CDD - Total	ND	0.5	H7CDF - Total	ND	0.5
1,2,3,4,6,7,8	ND	0.5	1,2,3,4,6,7,8	ND	0.5
			1,2,3,4,7,8,9	ND	0.5
O8CDD - Total	ND	0.8	O8CDF - Total	ND	0.8

Surrogale Standards	% Recover		
13C-T4CDF	83		
13C-T4CDD	75		
13C-P5CDF	71		
13C-P5CDD	64		
13C-H6CDF	78		
13C-HECDD	64		

% Decovery

13C-H6CDD 64 13C-H7CDF 61 13C-H7CDD 68 13C-08CDD 36

1. SDL = Sample Detection Limit

2. ND = Not detected

Surrogato Standarde

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Medami Oton

Approved

CLIENT SAMPLE I.D.: Procedural Blank

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Blank

SAMPLE SIZE: 10.0 g

AXYS FILE: DX-S-BLK 1635

DATE: 05/Sep/97

METHOD NO.: DX-S-01/Ver.2

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	ND	0.1	T4CDF - Total	ND	0.1
2,3,7,8	ND	0.1	2,3,7,8	ND	0.1
P5CDD - Total	ND	0.1	P5CDF - Total	ND	0.1
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	ND	0.1	H6CDF - Total	ND	0.1
1,2,3,4,7,8	ND	0.1	1,2,3,4,7,8	ND	0.1
1,2,3,6,7,8	ND	0.1	1,2,3,6,7,8	ND	0.1
1,2,3,7,8,9	ND	0.1	2,3,4,6,7,8	ND	0.1
			1,2,3,7,8,9	ND	0.1
H7CDD - Total	ND	0.1	H7CDF - Total	ND	0.1
1,2,3,4,6,7,8	ND	0.1	1,2,3,4,6,7,8	ND	0.1
			1,2,3,4,7,8,9	ND	0.1
O8CDD - Total	ND	0.4	O8CDF - Total	ND	0.4

Surrogate Standards	% Recovery
13C-T4CDF	66
13C-T4CDD	80
13C-P5CDF	59
13C-P5CDD	65
13C-H6CDF	65
13C-H6CDD	62
13C-H7CDF	49
13C-H7CDD	50
13C-08CDD	34

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

McKamilton Approved

CLIENT SAMPLE I.D.: Procedural Blank

CLIENT: Hatfield Consultants

SAMPLE TYPE: Blank

SAMPLE SIZE: 10.0 g

AXYS FILE: DX-T-BLK 1639

DATE: 23/Sep/97 REVISED: 24/Sep/97 METHOD NO .: DX-T-03/Ver.2

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	ND	0.1	T4CDF - Total	ND	0.1
2,3,7,8	ND	0.1	2,3,7,8	ND	0.1
P5CDD - Total	ND	0.1	P5CDF - Total	ND	0.1
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Totai	ND	0.3	H6CDF - Total	ND	0.3
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	ND	0.3
1,2,3,6,7,8	ND	0.3	1,2,3,6,7,8	ND	0.3
1,2,3,7,8,9	ND	0.3	2,3,4,6,7,8	ND	0.3
			1,2,3,7,8,9	ND	0.3
H7CDD - Total	ND	0.5	H7CDF - Total	ND	0.5
1,2,3,4,6,7,8	ND	0.5	1,2,3,4,6,7,8	ND	0.5
			1,2,3,4,7,8,9	ND	0.5
O8CDD - Total	ND	0.8	O8CDF - Total	ND	0.8

% Recovery

13C-T4CDF	55
13C-T4CDD	57
13C-P5CDF	39
13C-P5CDD	45
13C-H6CDF	53
13C-H6CDD	54
13C-H7CDF	41
13C-H7CDD	41
13C-08CDD	29

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Klamilta

Approved

CLIENT SAMPLE I.D.: Procedural Blank

CLIENT: Hatfield Consultants

SAMPLE TYPE: Blank

SAMPLE SIZE: 10.0 g

AXYS FILE: DX-T-BLK 1641

DATE: 26/Sep/97

METHOD NO .: DX-T-03/Ver.2

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	ND	0.1	T4CDF - Total	ND	0.1
2,3,7,8	ND	0.1	2,3,7,8	ND	0.1
P5CDD - Total	ND	0.1	P5CDF - Total	ND	0.1
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	ND	0.3	H6CDF - Total	ND	0.3
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	ND	0.3
1,2,3,6,7,8	ND	0.3	1,2,3,6,7,8	ND	0.3
1,2,3,7,8,9	ND	0.3	2,3,4,6,7,8	ND	0.3
			1,2,3,7,8,9	ND	0.3
H7CDD - Totai	ND	0.5	H7CDF - Total	ND	0.5
1,2,3,4,6,7,8	ND	0.5	1,2,3,4,6,7,8	ND	0.5
			1,2,3,4,7,8,9	ND	0.5
O8CDD - Total	ND	0.8	O8CDF - Total	ND	0.8

Surrogate Standards	% Recovery	
13C-T4CDF	86	
13C-T4CDD	89	
13C-P5CDF	75	
13C-P5CDD	79	
13C-H6CDF	87	
13C-H6CDD	84	
13C-H7CDF	78	
13C-H7CDD	84	
13C-08CDD	81	

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

Mc Janulton

CLIENT SAMPLE I.D.: Procedural Blank

CLIENT: Hatfield Consultants

SAMPLE TYPE: Blank

SAMPLE SIZE: 10.0 g

AXYS FILE: DX-S-BLK 1658 DATE: 14/Oct/97

METHOD NO .: DX-S-01/Ver.3

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	ND	0.1	T4CDF - Total	ND	0.1
2,3,7,8	ND	0.1	2,3,7,8	ND	0.1
P5CDD - Total	ND	0.1	P5CDF - Total	ND	0.1
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	ND	0.2	H6CDF - Total	ND	0.2
1,2,3,4,7,8	ND	0.2	1,2,3,4,7,8	ND	0.2
1,2,3,6,7,8	ND	0.2	1,2,3,6,7,8	ND	0.2
1,2,3,7,8,9	ND	0.2	2,3,4,6,7,8	ND	0.2
			1,2,3,7,8,9	ND	0.2
H7CDD - Total	ND	0.3	H7CDF - Total	ND	0.3
1,2,3,4,6,7,8	ND	0.3	1,2,3,4,6,7,8	ND	0.3
			1,2,3,4,7,8,9	ND	0.3
O8CDD - Total	ND	0.6	O8CDF - Total	ND	0.5

Surrogate Standards	% Recovery
13C-T4CDF	67
13C-T4CDD	59
13C-P5CDF	68
13C-P5CDD	74
13C-H6CDF	89
13C-H6CDD	76
13C-H7CDF	76
13C-H7CDD	65
13C-08CDD	52

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Manit

Approved

Appendix III

PCB/Pesticide Analysis Reports

))

PCB/PESTICIDE ANALYSIS REPORT

CLIENT SAMPLE I.D: VN9622

CLIENT: Hatfield Consultants

SAMPLE TYPE: Soil

SAMPLE SIZE: 13.1 g dry

% MOISTURE: 15

A So Soil (10 – 30 cm) Abandoned Airbase

AXYS ID: 2607-02 i

DATE: 29/Aug/97

METHOD NO .: CL-S-01/Ver.2

INSTRUMENT: GC-HRMS/GC-ECD

CONCENTRATION IN: ng/g

Hexachlorobenzene	0.18	0.006
alpha HCH	ND	0.01
beta HCH	ND	0.02
gamma HCH	ND	0.02
Heptachlor	ND	0.01
Aldrin	ND	0.004
Oxychlordane	ND	0.01
trans-Chlordane	ND	0.003
cis-Chlordane	ND	0.003
o,p'-DDE	0.05	0.01
p,p'-DDE	11	0.02
trans-Nonachlor	ND	0.003
cis-Nonachlor	ND	0.004
o,p'-DDD	0.46	0.02
p,p'-DDD	5.9	0.02
o,p'-DDT	1.0	0.02
p,p'-DDT	24	0.03
Mirex	ND	0.003
Heptachlor Epoxide	ND	0.03
alpha-Endosulphan (i)	ND	0.02
Dieldrin	ND	0.03
Endrin	ND	0.09
Methoxychlor	ND	0.12
Aroclor 1242	ND	0.29
Arocior 1254	ND	0.2
Aroclor 1260	2.5	0.02

Surrogate Standards	% Recovery	
13C-Hexachlorobenzene	63	
13C-gamma HCH	63	
13C-p,p'-DDE	90	
13C-p,p'-DDT	130	
13C-Mirex	62	
13C-PCB 101	66	
13C-PCB 180	77	
13C-PCB 209	56	
d4-alpha-Endosulphan	100	

1. SDL = Sample Detection Limit

2. ND = Not Detected

3. NDR = Peak detected but did not meet quantification criteria

4. Data have not been blank corrected

le former

CLIENT: Hatfield Consultants

SAMPLE TYPE: Soil

SAMPLE SIZE: 13.1 g dry

% MOISTURE: 13

Chi Khe Soil (10 – 30 cm) Farmer's Field (Reference) AXYS ID: 2607-03 ki

DATE: 29/Aug/97

METHOD NO.: CL-S-01/Ver.2

INSTRUMENT: GC-HRMS/GC-ECD

CONCENTRATION IN: ng/g

Compounds	Concentration	(SDL)
Hexachlorobenzene	8.4	1.3
alpha HCH	ND	3.2
beta HCH	ND	4.5
gamma HCH	ND	3.8
Heptachior	ND	3.1
Aldrin	ND	1.0
Oxychlordane	ND	3.4
trans-Chlordane	ND	0.92
cis-Chlordane	ND	0.99
o,p'-DDE	62	3.9
p,p'-DDE	2300	4.6
trans-Nonachlor	ND	0.98
cis-Nonachlor	ND	1.2
o,p'-DDD	320	5.5
p,p'-DDD	1900	6.0
o,p'-DDT	1100	5.4
p,p'-DDT	15000	7.0
Mirex	ND	0.8
Heptachlor Epoxide	ND	0.04
alpha-Endosulphan (I)	ND	0.08
Dieldrin	ND	0.03
Endrin	ND	0.08
Methoxychlor	ND	1.5
Aroclor 1242	ND	87
Aroclor 1254	ND	8.0
Aroclor 1260	ND	7.6

1. SDL = Sample Detection Limit

2. ND = Not Detected

- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected
- 6. Data are not recovery corrected; results represent minimum concentrations

Approved

MAXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA V8L 358 TEL (250), 656-0881 FAX (250) 656-4511

CLIENT: Hatfield Consultants

SAMPLE TYPE: Soil

SAMPLE SIZE: 11.9 g dry

% MOISTURE: 23

Dong Ha Soil (10 – 30 cm) Abandoned Airbase

DATE: 29/Aug/97 METHOD NO.: CL-S-01/Ver.2 INSTRUMENT: GC-HRMS/GC-ECD

AXYS ID: 2607-04 i

CONCENTRATION IN: ng/g

Compounds	Concentration	(SDL)
Hexachlorobenzene	0.04	0.005
alpha HCH	ND	. 0.01
beta HCH	ND	0.02
gamma HCH	ND	0.01
Heptachior	ND	0.009
Aldrin	ND	0.003
Oxychlordane	0.01	0.01
trans-Chlordane	0.1	0.003
cis-Chlordane	0.09	0.003
o,p'-DDE	ND	0.01
p,p'-DDE	0.08	0.02
trans-Nonachior	0.05	0.003
cis-Nonachlor	0.05	0.003
o,p'-DDD	0.07	0.02
p,p'-DDD	0.2	0.02
o,p'-DDT	0.03	0.02
p,p'-DDT	0.36	0.03
Mirex	ND	0.003
Heptachlor Epoxide	ND	0.14
alpha-Endosulphan (I)	ND	0.13
Dieldrin	ND	0.16
Endrin	ND	0.47
Methoxychlor	ND	0.6
Aroclor 1242	ND	0.32
Aroclor 1254	0.13	0.03
Aroclor 1260	0.53	0.03

Surrogate Standards	% Recovery	
13C-Hexachlorobenzene	73	
13C-gamma HCH	69	
13C-p,p'-DDE	87	
13C-p,p'-DDT	100	
13C-Mirex	61	
13C-PCB 101	68	
13C-PCB 180	74	
13C-PCB 209	60	
d4-aipha-Endosulphan	90	

1. SDL = Sample Detection Limit

2. ND = Not Detected

3. NDR = Peak detected but did not meet quantification criteria

4. Data have not been blank corrected

5. Concentrations are recovery corrected

))) AXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., (ANADA V8L 358 TEL (250) 656-0881 FAX (250) 656-4511

CLIENT: Hatfield Consultants.

SAMPLE TYPE: Soil

SAMPLE SIZE: 12.0 g dry

% MOISTURE: 22

A So Soil (0 – 10 cm) Abandoned Airbase

AXYS ID: 2607-06 i

DATE: 29/Aug/97

METHOD NO.: CL-S-01/Ver.2

INSTRUMENT: GC-HRMS/GC-ECD

CONCENTRATION IN: ng/g

Compounds	Concentration	(SDL)
Hexachiorobenzene	0.03	0.005
alpha HCH	ND	0.01
beta HCH	ND	0.02
gamma HCH	ND	0.01
Heptachlor	ND	0.009
Aldrin	ND	0.003
Oxychlordane	ND	0.01
trans-Chlordane	0.006	0.003
cis-Chlordane	0.007	0.003
o,p'-DDE	0.25	0.01
p,p'-DDE	36	0.01
trans-Nonachlor	0.008	0.003
cis-Nonachlor	0.004	0.004
o,p'-DDD	1.9	0.02
p,p'-DDD	16	0.02
o,p'-DDT	2.2	0.02
p,p'-DDT	18	0.02
Mirex	ND	0.002
Heptachlor Epoxide	ND	0.04
alpha-Endosulphan (l)	ND	0.03
Dieldrin	ND	0.06
Endrin	ND	0.12
Methoxychlor	ND	0.22
Aroclor 1242	ND	0.29
Aroclor 1254	0.37	0.03
Aroclor 1260	0.42	0.02

Surrogate Standards	% Recovery	
13C-Hexachlorobenzene	62	
13C-gamma HCH	58	
13C-p,p'-DDE	94	
13C-p,p'-DDT	100	
13C-Mirex	60	
13C-PCB 101	56	
13C-PCB 180	80	
13C-PCB 209	64	
d4-alpha-Endosulphan	90	

1. SDL = Sample Detection Limit

2. ND = Not Detected

3. NDR = Peak detected but did not meet quantification criteria

4. Data have not been blank corrected

CLIENT: Hatfield Consultants

SAMPLE TYPE: Soil

SAMPLE SIZE: 12.1 g dry

% MOISTURE: 21

Dong Ha Soil (0 – 10 cm) Abandoned Airbase

AXYS ID: 2607-08A i

DATE: 29/Aug/97

METHOD NO .: CL-S-01/Ver.2

INSTRUMENT: GC-HRMS/GC-ECD

CONCENTRATION IN: ng/g

Compounds	Concentration	(SDL)
Hexachiorobenzene	0.03	0.004
alpha HCH	0.02	0.01
beta HCH	0.05	0.02
gamma HCH	ND	0.01
Heptachlor	ND	0.008
Aldrin	ND	0.003
Oxychlordane	0.02	0.009
trans-Chlordane	0.47	0.003
cis-Chlordane	0.47	0.003
o,p'-DDE	0.02	0.01
p,p'-DDE	0.31	0.01
trans-Nonachlor	0.44	0.003
cis-Nonachlor	0.26	0.003
o,p'-DDD	0.31	0.02
p,p'-DDD	0.84	0.02
o,p'-DDT	0.04	0.02
p,p'-DDT	0.21	0.03
Mirex	ND	0.002
Heptachlor Epoxide	ND	0.11
alpha-Endosulphan (i)	ND	0.1
Dieldrin	ND	0.12
Endrin	ND	0.34
Methoxychlor	ND	0.43
Aroclor 1242	ND	0.26
Arocior 1254	0.4	0.02
Aroclor 1260	0.66	0.02

Surrogate Standards	% Recovery
13C-Hexachlorobenzene	75
13C-gamma HCH	69
13C-p,p'-DDE	100
13C-p,p'-DDT	100
13C-Mirex	71
13C-PCB 101	73
13C-PCB 180	84
13C-PCB 209	77
d4-aipha-Endosulphan	80

1. SDL = Sample Detection Limit

2. ND = Not Detected

3. NDR = Peak detected but did not meet quantification criteria

4. Data have not been blank corrected

Approved

PCB/PESTICIDE ANALYSIS REPORT

CLIENT SAMPLE I.D: VN9645

CLIENT: Hatfield Consultants

SAMPLE TYPE: Soil

SAMPLE SIZE: 12.0 g dry

% MOISTURE: 22

Dong Ha Soil (0 – 10 cm) Abandoned Airbase AXYS ID: 2607-08B I DUPLICATE DATE: 29/Aug/97

METHOD NO.: CL-S-01/Ver.2

INSTRUMENT: GC-HRMS/GC-ECD

CONCENTRATION IN: ng/g

Compounds	Concentration	(SDL)
Hexachlorobenzene	0.03	0.005
alpha HCH	0.02	0.01
beta HCH	0.03	0.01
gamma HCH	ND	0.01
Heptachlor	ND	0.008
Aldrin	ND	0.002
Oxychiordane	0.03	0.009
trans-Chlordane	0.43	0.002
cis-Chlordane	0.39	0.002
o,p'-DDE	0.04	0.01
p,p'-DDE	0.29	0.01
trans-Nonachlor	0.32	0.002
cis-Nonachlor	0.27	0.003
o,p'-DDD	0.26	0.01
p,p'-DDD	0.81	0.02
o,p'-DDT	0.05	0.02
p,p'-DDT	0.48	0.02
Mirex	ND	0.002
Heptachlor Epoxide	ND	0.12
alpha-Endosulphan (I)	ND	0.11
Dieldrin	ND	0.13
Endrin	ND	0.38
Methoxychlor	ND	0.48
Aroclor 1242	ND	0.24
Aroclor 1254	0.33	0.02
Aroclor 1260	0.85	0.02

Surrogate Standards	% Recovery
13C-Hexachlorobenzene	65
13C-gamma HCH	66
13C-p,p'-DDE	90
13C-p,p'-DDT	88
13C-Mirex	67
13C-PCB 101	70
13C-PCB 180	85
13C-PCB 209	78
d4-alpha-Endosulphan	90

1. SDL = Sample Detection Limit

2. ND = Not Detected

3. NDR = Peak detected but did not meet quantification criteria

4. Data have not been blank corrected

Approved

CLIENT: Hatfield Consultants

SAMPLE TYPE: Soil

SAMPLE SIZE: 13.0 g dry

% MOISTURE: 14

Chi Khe Soil (0 – 10 cm) Farmer's Field (Reference)

AXYS ID: 2607-14 ki

DATE: 29/Aug/97

METHOD NO.: CL-S-01/Ver.2

INSTRUMENT: GC-HRMS/GC-ECD

CONCENTRATION IN: ng/g

Compounds	Concentration	(SDL)
Hexachlorobenzene	7.8	1.2
alpha HCH	ND	3.0
beta HCH	ND	4.2
gamma HCH	ND .	3.6
Heptachlor	ND	2.5
Aldrin	ND	0.85
Oxychlordane	ND	2.8
trans-Chlordane	ND	0.75
cis-Chlordane	ND	0.8
o,p'-DDE	60	3.2
p,p'-DDE	2500	3.8
trans-Nonachior	ND	0.79
cis-Nonachlor	ND	0.98
o,p'-DDD	290	4.4
p,p'-DDD	1700	5.1
o,p'-DDT	1200	4.6
p,p'-DDT	11000	6.0
Mirex	ND	0.64
Heptachlor Epoxide	ND	0.01
alpha-Endosulphan (i)	ND	0.04
Dieldrin	ND	0.01
Endrin	ND	0.03
Methoxychlor	ND	0.52
Aroclor 1242	ND	83
Arocior 1254	ND	7.7
Aroclor 1260	ND	6.2

1. SDL = Sample Detection Limit

2. ND = Not Detected

3. NDR = Peak detected but did not meet quantification criteria

4. Data have not been blank corrected

5. Concentrations are recovery corrected

6. Data are not recovery corrected; results represent minimum concentrations

tooner/

CLIENT SAMPLE I.D: VN9629

CLIENT: Hatfield Consultants

SAMPLE TYPE: Tissue

Son Thuy

Pig Liver

SAMPLE SIZE: 5.19 g wet

% MOISTURE: 63

% LIPID: 2.8

AXYS ID: 2607-21

DATE: 14/Oct/97 REVISED: 20/Oct/97 METHOD NO.: CL-T-02/Ver. 2

INSTRUMENT: GC-MS/GC-ECD RUNFILE ID: CL762469.D CONCENTRATION IN: ng/g

Compounds	Concentration	(SDL)
Hexachlorobenzene	ND	0.16
alpha HCH	ND	0.27
beta HCH	ND	0.42
gamma HCH	ND	0.44
Heptachlor	ND	1.0
Aldrin	ND	0.34
Oxychlordane	ND	0.78
trans-Chlordane	ND	0.17
cis-Chlordane	ND .	0.11
o,p'-DDE	ND	0.1
p,p'-DDE	· 1.5	0.1
trans-Nonachlor	ND	0.06
cis-Nonachlor	ND	0.1
o,p'-DDD	ND	0.1
p,p'-DDD	0.92	0.1
o,p'-DDT	ND	0.08
p,p'-DDT	ND	0.09
Mirex	ND	0.20
Heptachlor Epoxide	ND	0.03
alpha-Endosulphan (i)	ND ND	0.02
Dieldrin	ND	0.03
Endrin	ND	0.08
Methoxychlor	ND	0.17
Aroclor 1242	ND	4.0
Aroclor 1254	ND	3.4
Aroclor 1260	ND	0.91

Surrogate Standards

% Recovery

13C-Hexachlorobenzene	61
13C-gamma HCH	85
13C-p,p'-DDE	91
13C-p,p'-DDT	90
13C-Mirex	88
13C-PCB 101	90
13C-PCB 180	100
13C-PCB 209	98
d4-alpha-Endosulphan	98

1. SDL = Sample Detection Limit

2. ND = Not Detected

- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected

Approved

CLIENT SAMPLE I.D: VN9646

CLIENT: Hatfield Consultants

SAMPLE TYPE: Tissue

A So Carp Fat

SAMPLE SIZE: 1.06 g wet

% MOISTURE: 8.3

% LIPID: 96

AXYS ID: 2607-23

DATE: 14/Oct/97

METHOD NO.: CL-T-02/Ver. 2

INSTRUMENT: GC-MS/GC-ECD RUNFILE ID: CL762470.D CONCENTRATION IN: ng/g

Compounds	Concentration	(SDL)
Hexachiorobenzene	3.2	0.33
alpha HCH	11	0.84
beta HCH	3.4	0.95
gamma HCH	2.7	1.0
Heptachlor	ND	2.8
Aldrin	ND	1.4
Oxychlordane	ND	3.0
trans-Chlordane	ND	0.69
cis-Chlordane	ND	0.85
o,p'-DDE	9.3	0.35
p,p'-DDE	450	0.36
trans-Nonachlor	0.38	0.37
cis-Nonachlor	ND	0.46
o,p'-DDD	79	0.29
p,p'-DDD	500	0.23
o,p'-DDT	43	0.67
p,p'-DDT	13	0.28
Mirex	ND	0.70
Heptachlor Epoxide	0.27	0.16
alpha-Endosulphan (I)	3.1	0.25
Dieldrin	0.83	0.19
Endrin	ND	0.37
Methoxychlor	ND	0.77
Aroclor 1242	ND	12
Aroclor 1254	ND	16
Aroclor 1260	ND	4.7

Surrogate Standards

% Recovery

71
96
79
70
84
82
100
96
52

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected

Approved

MAXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA V8L 358 TEL (250) 656-0881 FAX (250) 656-4511

Con Cuong

Pig Liver

(Reference)

% LIPID: 3.2

CLIENT SAMPLE I.D: VN9641

CLIENT: Hatfield Consultants

SAMPLE TYPE: Tissue

SAMPLE SIZE: 5.75 g wet

% MOISTURE: 69

DATE: 14/Oct/97 REVISED: 20/Oct/97 METHOD NO.: CL-T-02/Ver. 2

AXYS ID: 2607-26

INSTRUMENT: GC-MS/GC-ECD RUNFILE ID: CL762471.D CONCENTRATION IN: ng/g

Compounds	Concentration	(SDL)
Hexachlorobenzene	ND	0.2
alpha HCH	ND	0.34
beta HCH	ND	0.52
gamma HCH	ND	0.16
Heptachlor	ND	1.5
Aldrin	ND	0.25
Oxychlordane	ND	0.82
trans-Chlordane	ND	0.16
cis-Chlordane	ND	0.17
o,p'-DDE	ND	0.1
p,p'-DDE	0.76	0.1
trans-Nonachlor	ND	0.04
cis-Nonachlor	ND	0.12
o,p'-DDD	ND	0.1
p,p'-DDD	0.40	0.1
o,p'-DDT	ND	0.17
p,p'-DDT	ND	0.13
Mirex	ND	0.15
Heptachlor Epoxide	ND	0.03
alpha-Endosulphan (i)	ND	0.05
Dieldrin	ND	0.03
Endrin	ND	0.08
Methoxychlor	ND	0.16
Aroclor 1242	ND	3.3
Aroclor 1254	ND	5.0
Aroclor 1260	ND	1.5

Surrogate Standards

% Recovery

13C-Hexachlorobenzene	82
13C-gamma HCH	100
13C-p,p'-DDE	73
13C-p,p'-DDT	80
13C-Mirex	94
13C-PCB 101	92
13C-PCB 180	110
13C-PCB 209	110
d4-alpha-Endosulphan	59

1. SDL = Sample Detection Limit

2. ND = Not Detected

- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Data have not been blank corrected
- 5. Concentrations are recovery corrected

pproved

MAXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA V8L 358 TEL (250) 656-0881 FAX (250) 656-4511

CLIENT SAMPLE I.D: Spiked Matrix

CLIENT: Hatfield Consultants

SAMPLE TYPE: Sediment

SAMPLE SIZE: 10:0 g

AXYS ID: CL-S-SPM 781 i

DATE: 29/Aug/97

METHOD NO .: CL-S-02/Ver.2

INSTRUMENT: GC-HRMS

CONCENTRATION IN: ng/g

Compounds	Determined	Expected	% Recovery
lexachlorobenzene	5.1	5.1	100
lipha HCH	4.6	5.2	88
beta HCH	6.1	7.3	84
amma HCH	4.6	5.2	88
leptachlor	6.3	5.3	119
Aldrin	3.8	3.7	103
Dxychlordane	6.3	4.9	129
rans-Chlordane	3.3	2.8	118
is-Chlordane	4.6	4.6	100
p,p'-DDE	4.8	5.2	92
,p'-DDE	4.8	5.1	94
rans-Nonachlor	4.3	3.9	110
is-Nonachlor	3.8	3.5	109
p,p'-DDD	6.3	4.7	134
o,p'-DDD	8.2	6.2	132
p,p'-DDT	5.5	5.7	96
p,p'-DDT	6.0	5.7	105
Airex .	5.2	5.2	100
leptachlor Epoxide	2.9	4.7	62
ipha-Endosulphan (I)	3.3	3.7	89
Dieldrin	3.2	5.5	58
indrin	9.8	10	98
fethoxychlor	14	21	67
vrocior 1242	51 \	46	111
Aroclor 1254	52	42	124
roclor 1260	44	43	102

Surrogate Standards	% Recovery
13C-Hexachlorobenzene	65
13C-gamma HCH	70
13C-p,p'-DDE	86
13C-p,p'-DDT	99
13C-Mirex	66
13C-PCB 101	68
13C-PCB 180	83
13C-PCB 209	86
d4-alpha-Endosulphan	73

1. Concentrations are recovery corrected

bouer/

Approved

CLIENT SAMPLE I.D: Procedural Blank

CLIENT: Hatfield Consultants

SAMPLE TYPE: Blank

SAMPLE SIZE: 12.0 g

AXYS ID: CL-S-BLK 1107 i

DATE: 29/Aug/97

METHOD NO .: CL-S-01/Ver.2

INSTRUMENT: GC-HRMS/GC-ECD

CONCENTRATION IN: ng/g

Hexachlorobenzene 0.02 0.006 alpha HCH ND 0.01 beta HCH ND 0.02 gamma HCH ND 0.02 Heptachlor ND 0.01 Aldrin ND 0.01 Aldrin ND 0.01 Cxychlordane ND 0.004 Oxychlordane ND 0.004 cis-Chlordane ND 0.004 cis-Chlordane ND 0.004 cis-Chlordane ND 0.02 p.p'-DDE ND 0.02 p.p'-DDE ND 0.02 cis-Nonachlor ND 0.02 o.p'-DDD ND 0.02 p.p'-DDT ND 0.03 o.p'-DDT ND 0.03 alpha-Endosulphan (I) ND 0.02 alpha-Endosulphan (I) ND 0.02 Endrin ND 0.02 Endrin ND 0.02 Endrin ND	Compounds	Concentration	(SDL)
bata ND 0.02 gamma HCH ND 0.02 Heptachlor ND 0.01 Aldrin ND 0.004 Oxychlordane ND 0.01 trans-Chlordane ND 0.01 trans-Chlordane ND 0.004 cis-Chlordane ND 0.004 cis-Chlordane ND 0.02 p,p'-DDE ND 0.02 p,p'-DDE ND 0.02 trans-Nonachlor ND 0.004 cis-Nonachlor ND 0.02 p,p'-DDD ND 0.02 p,p'-DDT ND 0.03 o,p'-DDT ND 0.03 o,p'-DDT ND 0.04 Mirex ND 0.02 alpha-Endosulphan (I) ND 0.02 leidrin ND 0.04 Methoxychlor ND 0.04 Aroclor 1242 ND 0.02	Hexachlorobenzene	0.02	0.006
gamma HCH ND 0.02 Heptachlor ND 0.01 Aldrin ND 0.004 Oxychlordane ND 0.01 trans-Chlordane ND 0.004 cis-Chlordane ND 0.004 cis-Chlordane ND 0.004 cis-Chlordane ND 0.004 cis-Chlordane ND 0.02 p,p'-DDE ND 0.02 trans-Nonachlor ND 0.02 trans-Nonachlor ND 0.004 cis-Nonachlor ND 0.02 p,p'-DDD ND 0.02 p,p'-DDT ND 0.03 o,p'-DDT ND 0.04 Mirex ND 0.02 alpha-Endosulphan (I) ND 0.02 Endrin ND 0.04 Methoxychlor ND 0.76	alpha HCH	ND	0.01
Heptachlor ND 0.01 Aldrin ND 0.004 Oxychlordane ND 0.01 trans-Chlordane ND 0.004 cis-Chlordane ND 0.004 o,p'-DDE ND 0.02 p,p'-DDE ND 0.02 trans-Nonachlor ND 0.02 trans-Nonachlor ND 0.02 trans-Nonachlor ND 0.02 trans-Nonachlor ND 0.02 p,p'-DDE ND 0.02 p,p'-DDD ND 0.02 p,p'-DDD ND 0.02 p,p'-DDT ND 0.03 o,p'-DDT ND 0.04 Mirex ND 0.02 alpha-Endosulphan (I) ND 0.02 Endrin ND 0.02 Endrin ND 0.04 Methoxychlor ND 0.76	beta HCH	ND	0.02
Aldrin ND 0.004 Oxychlordane ND 0.01 trans-Chlordane ND 0.004 c.p'-DDE ND 0.02 p.p'-DDE ND 0.02 trans-Nonachlor ND 0.02 cis-Nonachlor ND 0.004 cis-Nonachlor ND 0.02 trans-Nonachlor ND 0.005 o,p'-DDD ND 0.02 p.p'-DDD ND 0.02 p.p'-DDD ND 0.02 p.p'-DDD ND 0.03 o,p'-DDT ND 0.03 mirex ND 0.04 Mirex ND 0.02 alpha-Endosulphan (I) ND 0.02 Dieldrin ND 0.04 Methoxychlor ND 0.04 Methoxychlor ND 0.04 Methoxychlor ND 0.04	gamma HCH	ND	0.02
Oxychlordane ND 0.01 trans-Chlordane ND 0.004 cis-Chlordane ND 0.004 o,p'-DDE ND 0.02 p,p'-DDE ND 0.02 trans-Nonachlor ND 0.004 cis-Nonachlor ND 0.02 p,p'-DDD ND 0.005 o,p'-DDD ND 0.02 p,p'-DDD ND 0.02 p,p'-DDD ND 0.03 o,p'-DDT ND 0.03 p,p'-DDT ND 0.04 Mirex ND 0.04 Mirex ND 0.02 alpha-Endosulphan (I) ND 0.02 Dieldrin ND 0.04 Methoxychlor ND 0.04 Methoxychlor ND 0.04 Methoxychlor ND 0.04	Heptachlor	ND	0.01
trans-Chlordane ND 0.004 cis-Chlordane ND 0.004 o,p'-DDE ND 0.02 p,p'-DDE ND 0.02 trans-Nonachlor ND 0.004 cis-Nonachlor ND 0.004 cis-Nonachlor ND 0.005 o,p'-DDD ND 0.02 p,p'-DDD ND 0.02 p,p'-DDD ND 0.03 o,p'-DDT ND 0.03 o,p'-DDT ND 0.04 Mirex ND 0.03 p,p'-DDT ND 0.04 Mirex ND 0.04 Heptachlor Epoxide ND 0.02 alpha-Endosulphan (I) ND 0.02 Dieldrin ND 0.04 Methoxychlor ND 0.04 Methoxychlor ND 0.76	Aldrin	ND	0.004
cis-Chlordane ND 0.004 o,p'-DDE ND 0.02 p,p'-DDE ND 0.02 trans-Nonachlor ND 0.004 cis-Nonachlor ND 0.004 cis-Nonachlor ND 0.004 cis-Nonachlor ND 0.005 o,p'-DDD ND 0.02 p,p'-DDD ND 0.03 o,p'-DDT ND 0.03 o,p'-DDT ND 0.04 Mirex ND 0.03 o,p'-DDT ND 0.04 Mirex ND 0.04 Heptachlor Epoxide ND 0.02 alpha-Endosulphan (l) ND 0.02 Dieldrin ND 0.02 Endrin ND 0.04 Methoxychlor ND 0.76 V ND 0.76	Oxychlordane	ND	0.01
o,p'-DDE ND 0.02 p,p'-DDE ND 0.02 trans-Nonachlor ND 0.004 cis-Nonachlor ND 0.005 o,p'-DDD ND 0.02 p,p'-DDD ND 0.02 p,p'-DDD ND 0.03 o,p'-DDT ND 0.03 p,p'-DDT ND 0.04 Mirex ND 0.03 p,p'-DDT ND 0.04 Mirex ND 0.04 Heptachlor Epoxide ND 0.02 alpha-Endosulphan (I) ND 0.05 Dieldrin ND 0.02 Endrin ND 0.04 Methoxychlor ND 0.04 Methoxychlor ND 0.76 V VD 0.76	trans-Chlordane	ND	0.004
p,p'-DDE ND 0.02 trans-Nonachlor ND 0.004 cis-Nonachlor ND 0.005 o,p'-DDD ND 0.02 p,p'-DDD ND 0.02 p,p'-DDD ND 0.03 o,p'-DDT ND 0.03 p,p'-DDT ND 0.04 Mirex ND 0.04 Heptachlor Epoxide ND 0.02 alpha-Endosulphan (l) ND 0.02 Dieldrin ND 0.02 Endrin ND 0.04 Methoxychlor ND 0.05 V O.04 0.02	cis-Chlordane	ND	0.004
trans-Nonachlor ND 0.004 cis-Nonachlor ND 0.005 o,p'-DDD ND 0.02 p,p'-DDD ND 0.03 o,p'-DDT ND 0.03 o,p'-DT ND 0.04 Mirex ND 0.03 p,p'-DDT ND 0.04 Mirex ND 0.04 Heptachlor Epoxide ND 0.02 alpha-Endosulphan (I) ND 0.02 Dieldrin ND 0.02 Endrin ND 0.04 Methoxychlor ND 0.02 V ND 0.76	o,p'-DDE	ND	0.02
cis-Nonachlor ND 0.005 o,p'-DDD ND 0.02 p,p'-DDD ND 0.03 o,p'-DDT ND 0.03 o,p'-DT ND 0.04 Mirex ND 0.04 Heptachlor Epoxide ND 0.02 alpha-Endosulphan (I) ND 0.02 Dieldrin ND 0.02 Endrin ND 0.02 Aroclor 1242 ND 0.76	p,p'-DDE	ND	0.02
o,p'-DDD ND 0.02 p,p'-DDD ND 0.03 o,p'-DDT ND 0.03 o,p'-DDT ND 0.04 Mirex ND 0.04 Heptachlor Epoxide ND 0.02 alpha-Endosulphan (I) ND 0.02 Dieldrin ND 0.02 Endrin ND 0.02 Aroclor 1242 ND 0.76 Aroclor 1254 ND 0.02	trans-Nonachlor	ND	0.004
p,p'-DDD ND 0.03 o,p'-DDT ND 0.03 p,p'-DDT ND 0.04 Mirex ND 0.04 Heptachlor Epoxide ND 0.02 alpha-Endosulphan (I) ND 0.05 Dieldrin ND 0.02 Endrin ND 0.02 Aroclor 1242 ND 0.76 Aroclor 1254 ND 0.02	cis-Nonachlor	ND	0.005
ND 0.03 o,p'-DDT ND 0.04 Mirex ND 0.04 Heptachlor Epoxide ND 0.02 alpha-Endosulphan (I) ND 0.05 Dieldrin ND 0.02 Aroclor 1242 ND 0.76 Aroclor 1254 ND 0.17	o,p'-DDD	ND	0.02
p,p'-DDT ND 0.04 Mirex ND 0.004 Heptachlor Epoxide ND 0.02 alpha-Endosulphan (I) ND 0.05 Dieldrin ND 0.02 Endrin ND 0.02 Kethoxychlor ND 0.04 Aroclor 1242 ND 0.17 Aroclor 1254 ND 0.02	p,p'-DDD	ND	0.03
MirexND0.004Heptachlor EpoxideND0.02alpha-Endosulphan (I)ND0.05DieldrinND0.02EndrinND0.02EndrinND0.04MethoxychlorND0.76Aroclor 1242ND0.17Aroclor 1254ND0.02	o,p'-DDT	ND	0.03
Heptachlor EpoxideND0.02alpha-Endosulphan (I)ND0.05DieldrinND0.02EndrinND0.04MethoxychlorND0.76VAroclor 1242ND0.17Aroclor 1254ND0.02	p,p'-DDT	ND	0.04
alpha-Endosulphan (I)ND0.05DieldrinND0.02EndrinND0.04MethoxychlorND0.76VAroclor 1242ND0.17Aroclor 1254ND0.02	Mirex	ND	0.004
DieldrinND0.02EndrinND0.04MethoxychlorND0.76Aroclor 1242ND0.17Aroclor 1254ND0.02	Heptachlor Epoxide	ND	0.02
Endrin ND 0.04 Methoxychlor ND 0.76 Aroclor 1242 ND 0.17 Aroclor 1254 ND 0.02	alpha-Endosulphan (I)	ND	0.05
Methoxychlor ND 0.76 Aroclor 1242 ND 0.17 Aroclor 1254 ND 0.02	Dieldrin	ND	0.02
Aroclor 1242 ND 0.17 Aroclor 1254 ND 0.02	Endrin	ND	0.04
Aroclor 1254 ND 0.02	Methoxychlor	ND	0.76
······	Aroclor 1242	ND	0.17
Aroclor 1260 ND 0.03	Aroclor 1254	ND	0.02
	Aroclor 1260	ND	0.03

Surrogate Standards	% Recovery
13C-Hexachlorobenzene	75
13C-gamma HCH	81
13C-p,p'-DDE	95
13C-p,p'-DDT	90
13C-Mirex	72
13C-PCB 101	73
13C-PCB 180	84
13C-PCB 209	59
d4-alpha-Endosulphan	75

1. SDL = Sample Detection Limit

2. ND = Not Detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected

MAXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA V8L 358 TEL (250) 656-0881 FAX (250) 656-4511

PCB/PESTICIDE ANALYSIS REPORT

CLIENT SAMPLE I.D: Procedural Blank

CLIENT: Hatfield Consultants

SAMPLE TYPE: Blank

SAMPLE SIZE: 5.0 g

AXYS ID: CL-T-BLK 1139

DATE: 14/Oct/97

METHOD NO.: CL-T-02/Ver.2

INSTRUMENT: GC-MS/GC-ECD RUNFILE ID: CL762461.D CONCENTRATION IN: ng/g

Compounds	Concentration	(SDL)
Hexachlorobenzene	ND	0.09
alpha HCH	ND	0.33
beta HCH	ND	0.34
gamma HCH	ND	0.2
Heptachlor	ND	0.84
Aldrin	ND	0.25
Oxychlordane	ND	0.34
trans-Chlordane	ND	0.14
cis-Chlordane	ND	0.13
o,p'-DDE	/ ND	0.11
p,p'-DDE	0.14	0.09
trans-Nonachlor	ND	0.1
cis-Nonachlor	ND	0.08
o,p'-DDD	ND	0.06
p,p'-DDD	ND	0.06
o,p'-DDT	ND	0.1
p,p'-DDT	ND	0.03
Mirex	ND	0.25
Heptachlor Epoxide	ND	0.03
alpha-Endosulphan (I)	ND	0.05
Dieldrin	ND	0.03
Endrin	ND	0.05
Methoxychlor	ND	0.1
Aroclor 1242	ND	9.2
Aroclor 1254	ND	3.4
Aroclor 1260	ND	0.83

Surrogate Standards	% Recovery	
13C-Hexachlorobenzene	49	
13C-gamma HCH	75	
13C-p,p'-DDE	68	
13C-p,p'-DDT	72	
13C-Mirex	73	
13C-PCB 101	73	
13C-PCB 180	89	
13C-PCB 209	76	
d4-alpha-Endosulphan	41	

- 1. SDL = Sample Detection Limit
- 2. ND = Not Detected
- 3. NDR = Peak detected but did not meet quantification criteria
- 4. Concentrations are recovery corrected

Approved

PCB/PESTICIDE ANALYSIS REPORT

CLIENT SAMPLE I.D: SRM 1588 N.I.S.T. Certified Cod Liver Oil

CLIENT: Hatfield Consultants

SAMPLE TYPE: Tissue

SAMPLE SIZE: 0.297 g wet

AXYS ID: CL-T-CRM 421

DATE: 14/Oct/97

METHOD NO.: CL-T-02/Ver. 2

INSTRUMENT: GC-MS/GC-ECD RUNFILE ID: CL762472.D CONCENTRATION IN: ng/g

Compounds	Determined	Certified
Hexachlorobenzene	170	148 +/- 21
alpha HCH	90	86 +/- 19
gamma HCH	23	24 +/- 6*
trans-Chiordane	50	50 +/- 13
cis-Chlordane	200	158 +/- 8
p,p'-DDE	620	641 +/- 62
trans-Nonachior	250	209 +/- 11
o,p'-DDD	41	37 +/- 8*
p,p'-DDD	250	277 +/- 15
o,p'-DDT	180	156 +/- 5
p,p'-DDT	560	529 +/- 45
Dieldrin	140	150 +/- 12
Arocior 1242	190	150 +/- 60**
Aroclor 1254	1700	1500 +/- 500**
Aroclor 1260	1100	840 +/- 210**

Surrogate Standards	% Recovery	
13C-Hexachlorobenzene	81	
13C-gamma HCH	110	
13C-p,p'-DDE	100	
13C-p,p'-DDT	93	* Information value supplied by N.I.S.T. in 1992
13C-Mirex	82	** In-house concensus value determined through repetitive analysis
13C-PCB 101	100	1. Concentrations are recovery corrected
13C-PCB 180	84	•
13C-PCB 209	94	
d4-alpha-Endosulphan	71	\int
		\sim 1

() () AXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA VBL 358 TEL (250) 656-0881 FAX (250) 656-4511

ettorier

Approved

Appendix IV

Acid Extractable Herbicide Report

anafytical

service

laboratories

ltd.

CHEMICAL ANALYSIS REPORT

Date:	August 21,	1997

ASL File No. H5788

Report On: 2607 Soil Analysis

Report To:Axys Analytical Services Ltd.
P.O. Box 2219
2045 Mills Road
Sidney, BC
V8L 3S8

Attention: Ms. Georgina Brooks

Received: July 31, 1997

ASL ANALYTICAL SERVICE LABORATORIES LTD. per:

Heather A. Ross, B.Sc. Project Chemist

Joanne Patrick, B.Sc. Project Chemist

Specialists in Environmental Chemistry

REMARKS

File No. H5788

Six soil sample extracts were received from AXYS Analytical Services Ltd. for Herbicide analysis. These extracts were prepared by AXYS according to methodology supplied by ASL.

The extracts were subsequently prepared for analysis using clean up and derivatization procedure for Herbicides, as described in the methodology section of this report. In addition to the extracts provided, a reagent blank and spike were carried through the same clean up and derivatization procedure and the results for these samples are reported in the following data tables.

RESULTS OF ANALYSIS - Sediment/Soil

File No. H5788

	Blank	Spike' Matrix	2607-02	2607-03	2607-04
<u>Herbicides</u> 2.4-Dichlorophenoxy Acetic Acid Dicamba 2.4-DB Dichlorprop Dinoseb	<0.01 <0.01 <0.01 <0.01 <0.01	70 85 112 60 22	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01
MCPA Picloram Silvex (2,4,5-TP) 2,4,5-T	<0.50 <0.01 <0.01 <0.01	65 83 83 85	<0.50 <0.01 <0.01 <0.01	<0.50 <0.01 <0.01 <0.01	<0.50 <0.01 <0.01 <0.01

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per dry kilogram except where noted. < = Less than the detection limit indicated. 'Spike Matrix results are expressed as percent recovery.

RESULTS OF ANALYSIS - Sediment/Soil

File No. H5788

	2607-06	2607-08A	2607-08B	
Tachicidaa				
<u>Herbicides</u> 2.4-Dichlorophenoxy Acetic Acid Dicamba 2,4-DB Dichlorprop Dinoseb	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	
MCPA Picloram Silvex (2,4,5-TP) 2,4,5-T	<0.50 <0.01 <0.01 <0.01	<0.50 <0.01 <0.01 <0.01	<0.50 <0.01 <0.01 <0.01	

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per dry kilogram except where noted. < = Less than the detection limit indicated.

RESULTS OF ANALYSIS - Guality Control¹

File No. H5788

	Reagent Blank	Reagent Spike %	-
Herbicides			
2,4-Dichlorophenoxy Acetic Acid	<0.01	87	
Dicamba	<0.01	105	
2,4-DB	<0.01	113	
Dichlorprop	<0.01	82	
Dinoseb	<0.01	78	
МСРА	<0.50	63	
Picloram	<0.01	117	
Silvex (2,4,5-TP)	<0.01	79	
2.4,5-T	<0.01	92	

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per dry kilogram except where noted. < = Less than the detection limit indicated. 'Reagent Spike results are expressed as percent recovery.

METHODOLOGY

File No. H5788

Outlines of the methodologies utilized for the analysis of the samples submitted are as follows:

Phenoxy Acid Herbicides in Soil/Sediment

This analysis is adapted from U.S. EPA Method 8151A (Publ. #SW-846 3rd ed., Washington, DC 20460). The procedure involves a liquid-solid extraction of the sediment/soil sample with a mixture of acidified acetone and diethyl ether. The acetone/diethyl ether extracts are combined into a separatory funnel and reagent water is added. Additional diethyl ether is added and the herbicides are extracted by liquid-liquid extraction. The diethyl ether extract is then concentrated, methylated with diazomethane and analysed by capillary column gas chromatography with mass spectrometric detection.

End of Report

1 .

analytical

service

laboratories

ltd.

CHEMICAL ANALYSIS REPORT

Date:	September 15, 1997

ASL File No. H6544

Report On: 2607 Extract Analysis

Report To:

Axys Analytical Services Ltd. P.O. Box 2219 2045 Mills Road Sidney, BC V8L 3S8

Attention:

August 26, 1997

Ms. Georgina Brooks

Received:

ASL ANALYTICAL SERVICE LABORATORIES LTD. per:

Heather A. Ross, B.Sc. Project Chemist

Joanne Patrick, B.Sc. **Project Chemist**

Ŷ

REMARKS

File No. H6544

One soil sample extract was received from AXYS Analytical Services Ltd. for Herbicide analysis. This extract was prepared by AXYS according to methodology supplied by ASL.

The extract was subsequently prepared for analysis using clean up and derivatization procedures for Herbicides, as described in the methodology section of this report. In addition to the soil extract provided, a method blank and a spiked matrix extract were also provided and were carried through the same procedure. The results for these samples are reported in the following data tables.

RESULTS OF ANALYSIS - Sediment/Soil

File No. H6544

	2607-14 VN9636	Blank	Spiked' Matrix	
<u>Herbicides</u> 2,4-Dichlorophenoxy Acetic Acid Dicamba 2,4-DB Dichlorprop Dinoseb	<0.01 <0.01 <0.01 <0.01 <0.02	<0.01 <0.01 <0.01 <0.01 <0.02	60 82 59 82 56	
MCPA Picloram Silvex (2,4,5-TP) 2,4,5-T	<0.50 <0.01 <0.01 <0.01	<0.50 <0.01 <0.01 <0.01	96 62 86 64	

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per dry kilogram except where noted. < = Less than the detection limit indicated. 'Spiked Matrix results are expressed as percent recovery.

METHODOLOGY

File No. H6544

Outlines of the methodologies utilized for the analysis of the samples submitted are as follows:

Phenoxy Acid Herbicides in Soil/Sediment

This analysis is adapted from U.S. EPA Method 8151A (Publ. #SW-846 3rd ed., Washington, DC 20460). The procedure involves a liquid-solid extraction of the sediment/soil sample with a mixture of acidified acetone and diethyl ether. The acetone/diethyl ether extracts are combined into a separatory funnel and reagent water is added. Additional diethyl ether is added and the herbicides are extracted by liquid-liquid extraction. The diethyl ether extract is then concentrated, methylated with diazomethane and analysed by capillary column gas chromatography with mass spectrometric detection.

End of Report

Appendix V

Batch Summary Sheets

Batch ID: DX-1618	Date: 13 August 1997	
Analysis Type: Dioxins/Furans	<i>Matrix Type:</i> Sediment	
BATCH	MAKEUP	
Samples: 2607 -01 A -02 -03 -04	Blank: DX-S-BLK 1618	
-05 -06	Reference or Spike:	
-07 -08 -09	DX-S-SPM 823	
	Duplicate:	
	2607-01 B	
Comments		

Copyright Axys Analytical Services Ltd. February 1993

1

Batch ID: DX-1635	Date: 05 September 1997		
Analysis Type: Dioxins/Furans	<i>Matrix Type:</i> Sediment		
BATCH	MAKEUP		
Samples: 2607 -10 -11 -12 A -13	Blank: DX-S-BLK 1635		
-14	Reference or Spike:		
	DX-S-SPM 840		
	Duplicate:		
	2607-12 B		
Comments			
	·		
· · · · · · · · · · · · · · · · · · ·			

Copyright Axys Analytical Services Ltd. February 1993

Batch ID: DX-1639	Date: 24 September 1997	
Analysis Type: Dioxins/Furans	Matrix Type: Plant / Tissue	
BATCH	MAKEUP	
Samples: 2607 -15 -16 -17 A -18	Blank: DX-T-BLK 1639	
-19 -20	Reference or Spike:	
	DX-T-SPM 845	
	Duplicate:	
	2607-17 B	
Comments		

Copyright Axys Analytical Services Ltd. February 1993

Batch ID: DX-1641	Date: 26 September 1997
Analysis Type: Dioxins/Furans	Matrix Type: Tissue
BATCH	MAKEUP
Samples: 2607 -21 -22 -23 -24 A	Blank: DX-T-BLK 1641
-25 -26	Reference or Spike:
-27	DX-T-SPM 847
	Duplicate:
	2607-24 B
Comments	3
	ţ

Copyright Axys Analytical Services Ltd. February 1993

Batch ID: DX-1658	Date: 14 October 1997	
Analysis Type: Dioxins/Furans	<i>Matrix Type:</i> Sediment	
BATCH MAKEUP		
Samples: 2607 -19	Blank: DX-S-BLK 1658	
	Reference or Spike:	
	DX-S-SPM 858	
	Duplicate:	
Comments		
	、	

Copyright Axys Analytical Services Ltd. February 1993

Batch ID: CL-1107	,	Date: August 29, 1997
Analysis Type: PC	B Aroclors/Pesticide	<i>Matrix Type:</i> Soil
BATCH MAKEUP		
<i>Samples:</i> 2607 - 02 i - 03 ki - 04 i - 06 i - 08A i - 14 ki	Blank: CL-S-BLK 1107	
	Reference or Spike:	
		CL-S-SPM 781
		Duplicate:
		2607 - 08B i
Comments:		
VN9636), the results, the	he extracts required dilution refore, are not recovery co	pesticides in samples 2607-03 & -14 (VN9624 & on and respiking with surrogate standard. The prrected and should be interpreted as minimum juired, the analyses can be repeated using a smaller

Copyright Axys Analytical Services Ltd. February 1993

Batch ID: CL-1139	Date: October 14, 1997		
Analysis Type: PCB/Pesticide	Matrix Type: Tissue		
BATCH MAKEUP			
Samples: 2607 - 21 - 23 - 25	Blank: CL-T-BLK 1139		
	Reference or Spike:		
	CL-T-CRM 421		
	Duplicate:		
Comments			

Copyright Axys Analytical Services Ltd. February 1993

] 1 $\left.\right\}$ } ļ

Section 3

Axys Analytical Report to Hatfield Consultants Ltd. April 1998

Analytical Data on 1997 Viet Nam Samples

Addendum

Analytical Data on 1997 PCB/Pesticide Analyses - Reports and Batch Summary Sheets

> (See Appendix A2.2 for Analytical Protocols)

Į }

AAS 2607

ANALYSIS OF POLYCHLORINATED DIOXINS AND FURANS IN SAMPLES FROM VIETNAM

FINAL REPORT

Prepared for:

HATFIELD CONSULTANTS LTD Suite 201 - 1571 Bellevue Avenue West Vancouver, BC V7V 3R6

Prepared by:

AXYS ANALYTICAL SERVICES PO Box 2219, 2045 Mills Road West Sidney, BC V8L 3S8

April 1998

TABLE OF CONTENTS

1.	Introduction
2.	Sample Handling
3.	Analytical Method for the Analysis of Polychlorinated Dibenzodioxins and Dibenzofurans
4.	Analytical Results
5.	Quality Assurance/Quality Control
	5.1Procedural Blanks45.2Duplicates45.3Surrogate Standard Recoveries45.4Laboratory Reference Samples45.5Detection Limits4
6.	Calculations

- Appendix I. Analytical MethodsAppendix II. Dioxin/Furan Analysis ReportsAppendix III. Laboratory Quality Control Sample Reports
- Appendix IV. Batch Summary Sheets

List of Tables

Table 1.	Correlation Between Axys Sample Number and Hatfield Sample
	Identification

ł

1. INTRODUCTION

Axys Analytical Services Ltd. was contracted by Hatfield Consultants Ltd. to conduct polychlorinated dibenzodioxin and dibenzofuran analyses on environmental samples from Vietnam. These samples included four sediment, five animal adipose tissue and four human blood samples. Table 1 presents a correlation between the Axys ID and the corresponding Hatfield sample description for each sample.

The sample handling protocols, analysis procedures and QA/QC results are documented in this final report. Complete data reports for all samples are presented. Results for QA/QC samples (procedural blanks, analysis duplicates, and internal reference material) are also presented.

2. SAMPLE HANDLING

The importation and storage of these samples were authorized by the Government of Canada and all storage, sample handling and laboratory procedures satisfied the requirements of the Permit to Import Animal Specimens and Product Samples issued by the Canadian Food Inspection Agency (98-02-SPB-08) and the Permit to Import Human Pathogen(s) issued by the Health Protection Branch, Laboratory Centre for Disease Control (P-02881).

Whole blood samples were collected in Vietnam and stored there for several months before being shipped to Hatfield Consultants' offices in Vancouver. Hatfield personnel then selected and shipped the samples for analysis to Axys. Some of the samples were noted to have leaked slightly prior to arrival and all of the samples were clotted. Upon receipt the samples were stored at -20°C. The samples were received and maintained using chain-of-custody procedures.

Samples were homogenized using a Virtis blender (adipose) or by hand stirring (sediments). The whole blood samples were not subsampled but analyzed in their entirety. Separate subsamples were taken for percent moisture determination for each sediment sample. The thawing, homogenization, moisture determination and extraction procedures were all conducted in a fumehood equipped with a HEPA filter. Once the procedures were complete, the fumehood and glassware were washed with a phenol-based disinfectant soap.

In addition, analysts wore disposable protective clothing and plastic gloves which were autoclaved after use. Residual extracted sample and spent reagents were also autoclaved. These materials were stored at Axys until disposal by Agriculture Canada.

Table 1Correlation Between Axys Sample Identification and Hatfield Sample Description

AXYS SAMPLE		HATFIELD SAMPLE DE	SCRIPTION
ID	HATFIELD ID	MEDIA	SAMPLE TYPE
2607-50	97NV005	Fish Pond Sediment	60 cm water depth
2607-51	97NV007	Fish Pond Sediment	60 cm water depth
2607-52	97NV009	Fish Pond Sediment	60 cm water depth
2607-53	97NV011	Fish Pond Sediment	60 cm water depth
2607-54	97NV019	Grass Carp Fat	Fat
2607-55	97NV027	Grass Carp Fat	Fat
2607-56	97NV031	Grass Carp Fat	Fat
2607-57	97NV039	Grass Carp Fat	Fat
2607-58	97NV045	Duck Fat	Fat
2607-59	97NV047	Human Whole Blood	Males, >26
2607-60	97NV048	Human Whole Blood	Females, >26
2607-61	97NV049	Human Whole Blood	Males, 15-25
2607-62	97NV050	Human Whole Blood	Females, 15-25

3. ANALYTICAL METHOD FOR THE ANALYSIS OF POLYCHLORINATED DIBENZODIOXINS AND DIBENZOFURANS

Complete descriptions of the analytical method used are presented in Appendix I.

Each sample was spiked with an aliquot of surrogate standard solution containing nine ¹³C-labelled dioxin and furan congeners. Soil samples were soxhlet extracted. Adipose (fat) samples were ground with sodium sulphate and packed into a glass column which was eluted with solvent. Whole blood samples were liquid/liquid extracted by shaking with hexane, methanol and saturated ammonium sulphate. Extracts were subject to a series of chromatographic cleanup steps prior to analysis by high resolution gas chromatography with high resolution mass spectrometric detection (HRGC/HRMS).

Gravimetric moisture determination was conducted on the sediment samples. Tissue extracts were subsampled for percent lipid determination.

4. ANALYTICAL RESULTS

Results were reported to Hatfield Consultants as the analyses were completed.

The original dioxin/furan analysis reports for all samples are included in Appendix II. Percent moisture and percent lipid data are also reported on the appropriate sheets. Reports for QA/QC samples are included in Appendix III.

All concentrations have been corrected based on the percent recovery of the surrogate standard. Concentrations are reported on a dry weight basis for soil, a wet weight basis for adipose tissue and both a wet weight and lipid weight basis for whole blood.

5. QUALITY ASSURANCE/QUALITY CONTROL

Samples were worked up in batches with accompanying QC samples. Each batch progressed from sample workup through instrumental analysis and onto data interpretation and final reports as a unit. The sample results were reviewed and evaluated in relation to the QA/QC samples worked up at the same time.

The composition of each batch of samples analyzed is detailed in a Batch Summary presented in Appendix IV. A procedural blank, analysis duplicate and reference sample were analyzed with each batch of samples, with the exception of the blood samples. A duplicate sample was not analyzed with the blood samples because of insufficient sample.

5.1 Procedural Blanks

Overall, procedural blanks demonstrated non-detectable or low background levels of target compounds.

5.2 Duplicates

Results for two duplicate analyses are reported along with the sample analysis results. Agreement within both sets of duplicates satisfied Axys' criterion of \pm (20% of the mean + Detection Limit).

5.3 Surrogate Standard Recoveries

The recovery of each surrogate standard was monitored by comparing its response to that of the recovery standard added just prior to instrumental analysis. The calculation of percent recovery is explained in Section 6.

Surrogate standard recoveries for each sample are presented along with the sample data, on each analysis report. The percent recoveries reported for most of the surrogates satisfied Axys' quality control standards criterion that they must be within an established acceptable range. One sample (2581-61, 97VN049) had low surrogate recoveries, however comparison of the data for the four samples implies that the isotope dilution quantification was still in control for this sample. Normally samples with low recoveries are repeated, however due to the limited amount of sample provided, the entire sample was consumed for the original analysis.

5.4 Laboratory Reference Samples

A "known" sample, a spiked in-house sample, was worked up with each batch of samples and used to demonstrate the accuracy of the data. Spiked samples were prepared at Axys by adding a solution of authentic target analytes into a weighed amount of in-house reference material. The percent recovery of the target analytes generally fell within 70% - 130%, which meets Axys' criterion for acceptability.

5.5 Detection Limits

Detection limits were calculated on a sample-specific basis and are reported for each sample on the analysis report.

Detection limits were calculated using a minimum area based on the noise level in the chromatogram. The minimum area is the area of a peak with a height three times the maximum height of the noise. Only peaks with responses greater than three times the background noise level were quantified. The calculation of detection limits is described in Section 6.

6. CALCULATIONS

A,

A_{si}

W,

W_{si}

The isotope dilution method was used to quantify components in the samples. Conc_i, the concentration of a component in a sample, was calculated using the following equations:

$$Conc_i = \frac{A_i}{A_{si}} x \frac{W_{si}}{W_i} x \frac{1}{RRF_{i,si}}$$

where

area of the analyte peak of interest to quantify == area of labelled surrogate used to quantify i weight of sample taken for analysis weight of labelled surrogate added to sample = RRF_{i.si} relative response factor of i to si as determined by daily runs of the = calibration standard solution and defined as

$$\frac{A_i}{A_{si}} \quad x \quad \frac{W_{si}}{W_i}$$

Detection limits were also calculated using the above equations with the minimum detectable peak area used for A_i. The minimum detectable peak area was calculated as three times the maximum noise in the chromatogram (height of noise x area / height ratio of a typical peak x 3).

Recoveries of internal standards were calculated by the internal standard method using the following equation.

$$\% Recovery = \frac{A_{si}}{A_{rs}} x \frac{W_{rs}}{W_{si}} x \frac{1}{RRF_{si,rs}} x 100$$

where A_{si} and A_{rs} are the areas of the labelled surrogate and the recovery standard in the sample run and W_{rs}, W_{si} are the weights of recovery standard and labelled surrogate added to the sample. RRF_{sirs} is the relative response factor of the labelled surrogate to the recovery standard as determined by daily runs of the quantification solution and defined by

$$\frac{A_{si}}{A_{rs}} \quad x \quad \frac{W_{rs}}{W_{si}}$$

} . 1

Appendix I

Analytical Method

ANALYSIS OF POLYCHLORINATED DIOXINS AND FURANS IN SOIL AND TISSUE SAMPLES

All samples were spiked with ¹³C-labelled surrogate standards (tetrachlorodioxin, tetrachlorofuran, pentachlorodioxin, pentachlorofuran, hexachlorodioxin, hexachlorofuran, heptachlorodioxin, heptachlorofuran, and octachlorodioxin) prior to analysis. Soil samples were soxhlet extracted. Tissue samples were ground with sodium sulphate, loaded into a glass chromatographic column and eluted with solvent. All extracts were subject to a series of chromatographic cleanup steps prior to analysis for polychlorinated dibenzodioxins and dibenzofurans by high resolution gas chromatography with high resolution mass spectrometric detection (HRGC/HRMS).

1. EXTRACTION PROCEDURES

Soils: A subsample of soil was ground with anhydrous sodium sulphate, transferred to a soxhlet thimble and an aliquot of surrogate standard solution added. The soxhlet was allowed to reflux for 16 hours with 80:20 toluene:acetone. The cooled extract was transferred to a separatory funnel and sequentially washed with potassium hydroxide solution, distilled water, concentrated sulphuric acid and a second time with distilled water. The organic layer was dried over anhydrous sodium sulphate, the solvent evaporated just to dryness and the residue redissolved in hexane. The extract was ready for chromatographic cleanup procedures.

A separate subsample of soil was dried overnight at 105°C to determine moisture content.

Tissues: A subsample of adipose tissue was ground with anhydrous sodium sulphate. The mixture was transferred to a glass chromatographic column containing 1:1 dichloromethane:hexane and an aliquot of surrogate standard solution was added. The column was eluted with additional solvent. The eluate was subsampled for gravimetric lipid determination. The remaining extract was concentrated, loaded onto a gel permeation column (to remove lipids and high molecular weight interferences) and eluted with 1:1 dichloromethane:hexane. The 150 - 300 mL fraction was collected and concentrated prior to chromatographic cleanup procedures.

2. CHROMATOGRAPHIC CLEANUP PROCEDURES

a) Silica Gel Column: The extracts were transferred to layered silica gel columns. Soil extracts were eluted with hexane. Tissue extracts were eluted with 1:1 dichloromethane:hexane. The eluate was concentrated by rotary evaporation.

b) Alumina Column: The extract from the silica gel column was loaded onto a basic alumina column. The first fraction, eluted with 3% dichloromethane:hexane was discarded. The second fraction, eluted with 1:1 dichloromethane:hexane was retained and concentrated by rotary evaporation.

c) Carbon/Celite Column: The extract from the alumina column was loaded onto a carbon/Celite column and eluted with 1:1 cyclohexane:dichloromethane (discarded) followed by 1:1 ethylacetate:toluene (discarded). The column was inverted and eluted with toluene (collected). This fraction was evaporated to near dryness and redissolved in hexane.

d) Alumina Column: The extract from the carbon/Celite column was loaded onto a basic alumina column. The first fraction, eluted with hexane was discarded. The second fraction, eluted with 1:1 dichloromethane:hexane was retained and concentrated.

e) Preparation for GC/MS Analysis: The extract was evaporated just to dryness and an aliquot of recovery standard solution containing ¹³C-labelled 1,2,3,4-tetrachlorodibenzodioxin and 1,2,3,7,8,9-hexachlorodibenzodioxin was added.

3. HIGH RESOLUTION GC/MS ANALYSIS

Polychlorinated dibenzodioxins (PCDD) and dibenzofurans (PCDF) were analyzed on an Ultima AutoSpec mass spectrometer equipped with a Hewlett Packard 5890 gas chromatograph, a DB-5 capillary chromatography column (60 m, 0.25 mm i.d x 0.1 μ m film thickness) and a CTC autosampler. Data were acquired in the voltage selected ion recording mode (SIR) to enhance sensitivity. At least two ions were used to monitor each of the target analytes and ¹³C-labelled surrogate standards. Five additional ions were monitored to check for interference from chlorinated diphenyl ethers.

The instrumental conditions, analyte identification and quantification protocols for PCDDs/PCDFs, as described in Environment Canada Report EPS 1/RM/19, February 1992¹ were strictly adhered to.

4. QUANTITATION PROCEDURES

Concentrations of target analytes were calculated using the isotope dilution method of quantitation. PCDDs and PCDFs were quantified by comparing the area of the quantification ion to that of the corresponding ¹³C-labelled surrogate standard and correcting for response factors. Response factors were determined daily using authentic PCDDS and PCDFs.

Concentrations of analytes were corrected based on the percent recovery of surrogate standards. Concentrations are reported in pg/g dry weight for soils and pg/g wet weight for adipose samples.

Sample detection limits are reported for each target analyte, based on a minimum detectable area for that compound in the chromatogram.

REFERENCES

1. Environment Canada Reference Method EPS 1/RM/19, *Reference Method for the Determination of Polychlorinated Dibenzo-para-dioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) in Pulp and Paper Mill Effluents*, February 1992.

ANALYSIS OF POLYCHLORINATED DIOXINS AND FURANS IN WHOLE BLOOD

All samples were spiked with ¹³C-labelled surrogate standards (tetrachlorodioxin, tetrachlorofuran, pentachlorodioxin, pentachlorofuran, hexachlorodioxin, hexachlorofuran, heptachlorodioxin, heptachlorofuran, and octachlorodioxin) prior to analysis. Blood samples were liquid/liquid extracted by shaking with solvent and ammonium sulphate solution. All extracts were subject to a series of chromatographic cleanup steps prior to analysis for polychlorinated dibenzodioxins and dibenzofurans by high resolution gas chromatography with high resolution mass spectrometric detection (HRGC/HRMS).

1. Extraction

The entire sample (typically 30 - 50 g) of whole blood was accurately weighed into a round bottom flask, spiked with an aliquot of surrogate standard solution and allowed to equilibrate. Ethanol, hexane and saturated ammonium sulphate were added and the sample extracted by shaking on a shaker table for 30 minutes. The hexane layer was decanted into a separatory funnel and the extraction repeated with an additional portion of hexane. The hexane extracts were combined and the aqueous phase discarded. The hexane extract was back extracted with reagent water, dried over anhydrous sodium sulphate, filtered and reduced just to dryness. The extract was redissolved in 1:1 dichloromethane:hexane and two aliquots were removed for gravimetric lipid analysis. The remaining extract was concentrated, loaded onto a gel permeation column (to remove lipids and high molecular weight interferences) and eluted with 1:1 dichloromethane:hexane. The 150 - 300 mL fraction was collected and concentrated to about 1 mL prior to chromatographic cleanup procedures.

2. Chromatographic Cleanup Procedures

a) Silica Gel Column: The extract was transferred to a layered acid/base silica gel column and eluted with 1:1 dichloromethane:hexane. The eluate was collected and concentrated to about 1 mL.

b) Alumina Column: The extract from the silica gel column was loaded onto a basic alumina column. The first fraction, eluted with 3% dichloromethane:hexane was discarded. The second fraction, eluted with 1:1 dichloromethane:hexane was retained and concentrated to about 1 mL.

c) Carbon/Celite Column: The extract from the alumina column was loaded onto a carbon/Celite column. The column was eluted with 1:1 cyclohexane:dichloromethane (discarded) followed by 1:1 ethylacetate:toluene (discarded). The column was inverted and eluted with toluene (collected). The extract was evaporated to near dryness and redissolved in 2 mL hexane.

d) Alumina Column: The extract from the carbon/Celite column was loaded onto a basic alumina column. The first fraction, eluted with 3% dichloromethane:hexane was discarded. The second fraction, eluted with 1:1 dichloromethane:hexane was retained and concentrated to about 500 μ L.

e) Preparation for GC/MS Analysis: The extract was evaporated just to dryness and an aliquot of recovery standard solution containing ¹³C-labelled 1,2,3,4-tetrachlorodibenzodioxin and 1,2,3,7,8,9-hexachlorodibenzodioxin was added.

3. HRGC/HRMS Analysis

Polychlorinated dibenzodioxins (PCDD) and dibenzofurans (PCDF) were analyzed on a high resolution AutoSpec Ultima mass spectrometer equipped with a Hewlett Packard 5890 gas chromatograph, a DB-5 capillary chromatography column (60 m, 0.25 mm i.d x 0.1 μ m film thickness) and a CTC autosampler. Data were acquired in the voltage selected ion recording mode (SIR) to enhance sensitivity. At least two ions were used to monitor each of the target analytes and ¹³C-labelled surrogate standards. Five additional ions were monitored to check for interference from chlorinated diphenyl ethers.

The instrumental conditions, analyte identification and quantification protocols for PCDDs/PCDFs, as described in Environment Canada Report EPS 1/RM/19, February 1992 were strictly adhered to.

4. Quantification Procedures

Concentrations of target analytes were calculated using the isotope dilution method of quantification. PCDDs and PCDFs were quantified by comparing the area of the quantification ion to that of the corresponding ¹³C-labelled surrogate standard and correcting for response factors. Response factors were determined daily using authentic PCDDS and PCDFs.

Concentrations of analytes were corrected based on the percent recovery of surrogate standards. Concentrations were reported in pg/g on both a wet weight and a lipid weight basis.

Sample detection limits were reported for each target analyte, based on a minimum detectable area for that compound in the chromatogram.

REFERENCES

1. DX-B-06/Ver.1, AXYS Method Doc. DX/01 Rev 4 January 9, 1998.

2. Environment Canada Reference Method EPS 1/RM/19, *Reference Method for the Determination of Polychlorinated Dibenzo-para-dioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) in Pulp and Paper Mill Effluents,* February 1992.

3. US EPA 1994 Method 8290, Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans by High Resolution Gas Chromatography/High Resolution Mass Spectrometry (HRGC/HRMS). SW-846 Third Edition. Office of Solid Waste and Emergency Response, Washington, DC.

2607DXB

Appendix II

Dioxin/Furan Analysis Reports

CLIENT SAMPLE I.D.: 97VN005

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 14.6 g dry

A So Fish Pond Sediment Pond #1

% MOISTURE: 27

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	6.7	0.1	T4CDF - Total	1.5	0.1
2,3,7,8	3.4	0.1	2,3,7,8	0.2	0.1
P5CDD - Total	8.9	0.1	P5CDF - Total	0.7	0.1
1,2,3,7,8	0.5	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	7.5	0.2	H6CDF - Total	ND	0.2
1,2,3,4,7,8	0.2	0.2	1,2,3,4,7,8	ND	0.2
1,2,3,6,7,8	ND	0.2	1,2,3,6,7,8	ND	0.2
1,2,3,7,8,9	0.2	0.2	2,3,4,6,7,8	ND	0.2
			1,2,3,7,8,9	ND	0.2
H7CDD - Total	4.4	0.3	H7CDF - Total	ND	0.3
1,2,3,4,6,7,8	1.9	0.3	1,2,3,4,6,7,8	ND	0.3
			1,2,3,4,7,8,9	ND	0.3
O8CDD - Total	49	0.5	O8CDF - Total	ND	0.5

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	3.9 pg/g
13C-T4CDF	63		
13C-T4CDD	64	2,3,7,8 - TCDD TEQs (ND=0) =	3.8 pg/g
13C-P5CDF	59		
13C-P5CDD	62		
13C-H6CDF	75		
13C-H6CDD	76		
13C-H7CDF	67		
13C-H7CDD	59		
13C-08CDD	61		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Approved

AXYS FILE: 2607-50 AL

METHOD NO .: DX-S-01/Ver.3

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

DATE: 02/Mar/98

CLIENT SAMPLE I.D.: 97VN005

CLIENT: Hatfield Consultants Ltd.

Duplicate DATE: 02/Mar/98 A So SAMPLE TYPE: Sediment METHOD NO .: DX-S-01/Ver.3 **Fish Pond Sediment** SAMPLE SIZE: 13.0 g dry **INSTRUMENT: GC-HRMS** Pond #1 % MOISTURE: 31 CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)	
T4CDD - Total	9.9	0.1	T4CDF - Total	2.3	0.1	
2,3,7,8	5.2	0.1	2,3,7,8	0.3	0.1	
P5CDD - Total	13	0.1	P5CDF - Total	1.1	0.1	
1,2,3,7,8	0.8	0.1	1,2,3,7,8	ND	0.1	
			2,3,4,7,8	ND	0.1	
H6CDD - Total	10	0.2	H6CDF - Total	0.3	0.2	
1,2,3,4,7,8	0.3	0.2	1,2,3,4,7,8	ND	0.2	
1,2,3,6,7,8	0.2	0.2	1,2,3,6,7,8	ND	0.2	
1,2,3,7,8,9	0.3	0.2	2,3,4,6,7,8	ND	0.2	
			1,2,3,7,8,9	ND	0.2	
H7CDD - Total	5.3	0.4	H7CDF - Total	ND	0.4	-
1,2,3,4,6,7,8	2.4	0.4	1,2,3,4,6,7,8	ND	0.4	
			1,2,3,4,7,8,9	ND	0.4	
O8CDD - Total	64	0.6	O8CDF - Total	ND	0.6	

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	5.9 pg/g
13C-T4CDF	71		
13C-T4CDD	76	2,3,7,8 - TCDD TEQs (ND=0) =	5.8 pg/g
13C-P5CDF	73		
13C-P5CDD	70		
13C-H6CDF	83		
13C-H6CDD	91		
13C-H7CDF	74		
13C-H7CDD	81		
13C-08CDD	81		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

10 amik Approved

AXYS FILE: 2607-50 BL

CLIENT SAMPLE I.D.: 97VN007

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 12.1 g dry

A So Fish Pond Sediment Pond #2

% MOISTURE: 41

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	7.1	0.1	T4CDF - Total	1.5	0.1
2,3,7,8	5.4	0.1	2,3,7,8	0.3	0.1
P5CDD - Total	4.5	0.1	P5CDF - Total	0.9	0.1
1,2,3,7,8	0.4	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	9.3	0.2	H6CDF - Total	0.2	0.2
1,2,3,4,7,8	ND	0.2	1,2,3,4,7,8	ND	0.2
1,2,3,6,7,8	0.3	0.2	1,2,3,6,7,8	ND	0.2
1,2,3,7,8,9	0.5	0.2	2,3,4,6,7,8	ND	0.2
			1,2,3,7,8,9	ND	0.2
H7CDD - Total	7.9	0.4	H7CDF - Total	ND	0.4
1,2,3,4,6,7,8	3,5	0.4	1,2,3,4,6,7,8	ND	0.4
			1,2,3,4,7,8,9	ND	0.4
O8CDD - Total	170	0.6	O8CDF - Total	ND	0.6

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	6.0 pg/g
13C-T4CDF	76		
13C-T4CDD	84	2,3,7,8 - TCDD TEQs (ND=0) =	5.9 pg/g
13C-P5CDF	71		
13C-P5CDD	70		
13C-H6CDF	100		
13C-H6CDD	87		
13C-H7CDF	85		
13C-H7CDD	84		
13C-08CDD	94		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

McHamilton

AXYS FILE: 2607-51 L

METHOD NO .: DX-S-01/Ver.3

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

DATE: 02/Mar/98

Approved

CLIENT SAMPLE I.D.: 97VN009

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 13.0 g dry

% MOISTURE: 29

A So Fish Pond Sediment Pond #3 AXYS FILE: 2607-52 L

DATE: 02/Mar/98

METHOD NO.: DX-S-01/Ver.3

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	11	0.1	T4CDF - Total	2.2	0.1
2,3,7,8	8.5	0.1	2,3,7,8	0.5	0.1
P5CDD - Total	3.3	0.1	P5CDF - Total	1.1	0.1
1,2,3,7,8	0.4	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	5.8	0.2	H6CDF - Total	0.2	0.2
1,2,3,4,7,8	ND	0.2	1,2,3,4,7,8	ND	0.2
1,2,3,6,7,8	0.3	0.2	1,2,3,6,7,8	ND	0.2
1,2,3,7,8,9	0.4	0.2	2,3,4,6,7,8	ND	0.2
			1,2,3,7,8,9	ND	0.2
H7CDD - Total	9.4	0.4	H7CDF - Total	ND	0.4
1,2,3,4,6,7,8	4.1	0.4	1,2,3,4,6,7,8	ND	0.4
			1,2,3,4,7,8,9	ND	0.4
O8CDD - Total	220	0.6	O8CDF - Total	ND	0.6

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	9.2	pg/g
13C-T4CDF	70			
13C-T4CDD	73	2,3,7,8 - TCDD TEQs (ND=0) =	9.1	pg/g
13C-P5CDF	65			
13C-P5CDD	64			
13C-H6CDF	82			
13C-H6CDD	88			
13C-H7CDF	71			
13C-H7CDD	69			
13C-08CDD	68			

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

Manilton Approv

CLIENT SAMPLE I.D.: 97VN011

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 14.1 g dry

A So **Fish Pond Sediment** Pond #4

% MOISTURE: 25

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	3.3	0.1	T4CDF - Total	0.6	0.1
2,3,7,8	1.8	0.1	2,3,7,8	0.1	0.1
P5CDD - Total	2.5	0.1	P5CDF - Total	0.4	0.1
1,2,3,7,8	0.1	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	1.5	0.2	H6CDF - Total	ND	0.2
1,2,3,4,7,8	ND	0.2	1,2,3,4,7,8	ND	0.2
1,2,3,6,7,8	ND	0.2	1,2,3,6,7,8	ND	0.2
1,2,3,7,8,9	ND	0.2	2,3,4,6,7,8	ND	0.2
			1,2,3,7,8,9	ND	0.2
H7CDD - Total	1.4	0.4	H7CDF - Total	ND	0.4
1,2,3,4,6,7,8	0.6	0.4	1,2,3,4,6,7,8	ND	0.4
			1,2,3,4,7,8,9	ND	0.4
O8CDD - Total	23	0.6	O8CDF - Total	ND	0.6

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	2.0 pg/g
13C-T4CDF	62		
13C-T4CDD	53	2,3,7,8 - TCDD TEQs (ND=0) =	1.9 pg/g
13C-P5CDF	46		
13C-P5CDD	42		
13C-H6CDF	58		
13C-H6CDD	57		
13C-H7CDF	48		
13C-H7CDD	36		
13C-08CDD	27		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Mamilton

AXYS FILE: 2607-53 i

METHOD NO .: DX-S-01/Ver.3

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

DATE: 02/Mar/98

CLIENT SAMPLE I.D.: 97VN019	AXYS FILE: 2607-54	
CLIENT: Hatfield Consultants Ltd.		DATE: 13/Mar/98
SAMPLE TYPE: Tissue	A So	METHOD NO.: DX-T-03/Ver.2
SAMPLE SIZE: 2.75 g wet	Carp Fat Pond #1	INSTRUMENT: GC-HRMS
% LIPID: 72		CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)	-
T4CDD - Total	10	0.3	T4CDF - Total	13	0.2	-
2,3,7,8	7.9	0.3	2,3,7,8	2.3	0.2	-
P5CDD - Total	2.3	0.2	P5CDF - Total	3.4	0.2	
1,2,3,7,8	NDR(0.6)	0.2	1,2,3,7,8	0.3	0.2	
			2,3,4,7,8	0.6	0.2	-
H6CDD - Totai	1.5	0.3	H6CDF - Total	0.5	0.2	
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	NDR(0.3)	0.2	
1,2,3,6,7,8	0.3	0.3	1,2,3,6,7,8	NDR(0.2)	0.2	-
1,2,3,7,8,9	0.4	0.3	2,3,4,6,7,8	0.3	0.2	
			1,2,3,7,8,9	ND	0.2	-
H7CDD - Total	1.6	0.3	H7CDF - Total	0.4	0.2	
1,2,3,4,6,7,8	0.9	0.3	1,2,3,4,6,7,8	0.4	0.2	
			1,2,3,4,7,8,9	ND	0.2	-
O8CDD - Total	2.9	0.4	O8CDF - Total	NDR(0.4)	0.4	

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	8.7 pg/g
13C-T4CDF	63		
13C-T4CDD	70	2,3,7,8 - TCDD TEQs (ND=0) =	8.6 pg/g
13C-P5CDF	56		
13C-P5CDD	57		
13C-H6CDF	64		
13C-H6CDD	61		
13C-H7CDF	56		
13C-H7CDD	52		
13C-08CDD	39		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

Manulton

A So

Carp Fat

Pond #2

CLIENT SAMPLE I.D.: 97VN027

SAMPLE TYPE: Tissue

% LIPID: 89

SAMPLE SIZE: 5.36 g wet

CLIENT: Hatfield Consultants Ltd.

DATE: 13/Mar/98 METHOD NO.: DX-T-03/Ver.2 INSTRUMENT: GC-HRMS CONCENTRATION IN: pg/g

AXYS FILE: 2607-55

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	20	0.1	T4CDF - Total	11	0.1
2,3,7,8	16	0.1	2,3,7,8	2.4	0.1
P5CDD - Total	4.2	0.1	P5CDF - Total	4.0	0.1
1,2,3,7,8	0.7	0.1	1,2,3,7,8	0.3	0.1
			2,3,4,7,8	NDR(0.4)	0.1
H6CDD - Total	1.4	0.2	H6CDF - Total	1.1	0.1
1,2,3,4,7,8	ND	0.2	1,2,3,4,7,8	0.3	0.1
1,2,3,6,7,8	NDR(0.3)	0.2	1,2,3,6,7,8	0.2	0.1
1,2,3,7,8,9	NDR(0.2)	0.2	2,3,4,6,7,8	0.2	0.1
			1,2,3,7,8,9	ND	0.1
H7CDD - Total	0.7	0.1	H7CDF - Total	0.1	0.1
1,2,3,4,6,7,8	0.4	0.1	1,2,3,4,6,7,8	0.1	0.1
			1,2,3,4,7,8,9	ND	0.1
O8CDD - Total	1.0	0.1	O8CDF - Total	ND	0.1

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	16.7 pg/g
13C-T4CDF	77		
13C-T4CDD	85	2,3,7,8 - TCDD TEQs (ND=0) =	16.7 pg/g
13C-P5CDF	67		
13C-P5CDD	68		
13C-H6CDF	77		
13C-H6CDD	77		
13C-H7CDF	73		
13C-H7CDD	73		
13C-08CDD	67		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

Melamilto

CLIENT SAMPLE I.D.: 97VN031AXYS FILE: 2607-56CLIENT: Hatfield Consultants Ltd.DATE: 13/Mar/98SAMPLE TYPE: TissueA So
Carp Fat
Pond #3METHOD NO.: DX-T-03/Ver.2SAMPLE SIZE: 1.00 g wetCarp Fat
Pond #3INSTRUMENT: GC-HRMS% LIPID: 61CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)	
T4CDD - Total	25	0.5	T4CDF - Total	15	0.4	
2,3,7,8	21	0.5	2,3,7,8	4.0	0.4	
P5CDD - Total	4.0	0.4	P5CDF - Total	5.0	0.5	
1,2,3,7,8	0.8	0.4	1,2,3,7,8	0.6	0.5	
			2,3,4,7,8	0.8	0.5	
H6CDD - Total	0.6	0.5	H6CDF - Total	ND	0.4	
1,2,3,4,7,8	ND	0.5	1,2,3,4,7,8	NDR(0.4)	0.4	
1,2,3,6,7,8	ND	0.5	1,2,3,6,7,8	ND	0.4	
1,2,3,7,8,9	NDR(0.6)	0.5	2,3,4,6,7,8	ND	0.4	
			1,2,3,7,8,9	ND	0.4	
H7CDD - Total	0.8	0.3	H7CDF - Total	0.5	0.5	
1,2,3,4,6,7,8	0.8	0.3	1,2,3,4,6,7,8	0.5	0.5	
			1,2,3,4,7,8,9	ND	0.5	
O8CDD - Total	3.3	0.6	O8CDF - Total	ND	0.6	-

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	22.4	pg/g
13C-T4CDF	79			
13C-T4CDD	86	2,3,7,8 - TCDD TEQs (ND=0) =	22.2	pg/g
13C-P5CDF	69			
13C-P5CDD	72			
13C-H6CDF	69			
13C-H6CDD	72			
13C-H7CDF	62			
13C-H7CDD	60			
13C-08CDD	59			

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

Melamilton Approve

CLIENT SAMPLE I.D.: 97VN039AXYS FILE: 2607-57 ACLIENT: Hatfield Consultants Ltd.DATE: 13/Mar/98SAMPLE TYPE: TissueA So
Carp Fat
Pond #4METHOD NO.: DX-T-03/Ver.2SAMPLE SIZE: 5.14 g wetCarp Fat
Pond #4INSTRUMENT: GC-HRMS% LIPID: 86CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	41	0.1	T4CDF - Total	15	0.1
2,3,7,8	33	0.1	2,3,7,8	4.3	0.1
P5CDD - Total	11	0.1	P5CDF - Total	4.0	0.1
1,2,3,7,8	1.4	0.1	1,2,3,7,8	NDR(0.3)	0.1
			2,3,4,7,8	NDR(0.5)	0.1
H6CDD - Total	2.5	0.1	H6CDF - Total	0.8	0.1
1,2,3,4,7,8	0.2	0.1	1,2,3,4,7,8	0.2	0.1
1,2,3,6,7,8	0.2	0.1	1,2,3,6,7,8	0.2	0.1
1,2,3,7,8,9	NDR(0.2)	0.1	2,3,4,6,7,8	0.1	0.1
			1,2,3,7,8,9	ND	0.1
H7CDD - Total	0.3	0.1	H7CDF - Total	0.2	0.1
1,2,3,4,6,7,8	0.3	0.1	1,2,3,4,6,7,8	0.2	0.1
			1,2,3,4,7,8,9	ND	0.1
O8CDD - Total	0.7	0.2	O8CDF - Total	NDR(0.1)	0.1

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	34.3	pg/g
13C-T4CDF	68			
13C-T4CDD	71	2,3,7,8 - TCDD TEQs (ND=0) =	34.2	pg/g
13C-P5CDF	60			
13C-P5CDD	62			
13C-H6CDF	68			
13C-H6CDD	66			
13C-H7CDF	59			
13C-H7CDD	54			
13C-08CDD	42			

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

Meklamelton Approved

CLIENT SAMPLE I.D.: 97VN039

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Tissue

SAMPLE SIZE: 5.25 g wet

% LIPID: 84

AXYS FILE: 2607-57 B Duplicate DATE: 13/Mar/98 A So Carp Fat Pond #4 CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	41	0.1	T4CDF - Total	15	0.1
2,3,7,8	34	0.1	2,3,7,8	4.4	0.1
P5CDD - Total	9.5	0.1	P5CDF - Total	5.3	0.1
1,2,3,7,8	1.2	0.1	1,2,3,7,8	NDR(0.3)	0.1
			2,3,4,7,8	0.5	0.1
H6CDD - Total	1.8	0.1	H6CDF - Total	0.6	0.1
1,2,3,4,7,8	0.2	0.1	1,2,3,4,7,8	0.2	0.1
1,2,3,6,7,8	NDR(0.2)	0.1	1,2,3,6,7,8	NDR(0.2)	0.1
1,2,3,7,8,9	0.2	0.1	2,3,4,6,7,8	0.2	0.1
			1,2,3,7,8,9	ND	0.1
H7CDD - Total	0.2	0.1	H7CDF - Total	0.2	0.1
1,2,3,4,6,7,8	0.2	0.1	1,2,3,4,6,7,8	0.2	0.1
			1,2,3,4,7,8,9	ND	0.1
O8CDD - Total	0.6	0.1	O8CDF - Total	0.1	0.1

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)		
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	35.4	pg/g
13C-T4CDF	73			
13C-T4CDD	81	2,3,7,8 - TCDD TEQs (ND=0) =	35.4	pg/g
13C-P5CDF	65			
13C-P5CDD	68			
13C-H6CDF	74			
13C-H6CDD	73			
13C-H7CDF	64			
13C-H7CDD	64			
13C-08CDD	61			

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

Medamilton

CLIENT SAMPLE I.D.: 97VN045 AXYS FILE: 2607-58 **CLIENT: Hatfield Consultants Ltd.** DATE: 13/Mar/98 SAMPLE TYPE: Tissue METHOD NO .: DX-T-03/Ver.2 A So **Duck Fat** SAMPLE SIZE: 5.00 g wet **INSTRUMENT: GC-HRMS** % LIPID: 94 CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	6.1	0.1	T4CDF - Total	1.6	0.1
2,3,7,8	6.1	0.1	2,3,7,8	1.1	0.1
P5CDD - Total	0.9	0.1	P5CDF - Total	1.0	0.1
1,2,3,7,8	0.6	0.1	1,2,3,7,8	0.3	0.1
			2,3,4,7,8	0.4	0.1
H6CDD - Total	2.2	0.1	H6CDF - Total	ND	0.1
1,2,3,4,7,8	0.3	0.1	1,2,3,4,7,8	ND	0.1
1,2,3,6,7,8	0.4	0.1	1,2,3,6,7,8	ND	0.1
1,2,3,7,8,9	0.4	0.1	2,3,4,6,7,8	ND	0.1
			1,2,3,7,8,9	ND	0.1
H7CDD - Total	0.8	0.1	H7CDF - Total	ND	0.1
1,2,3,4,6,7,8	0.4	0.1	1,2,3,4,6,7,8	ND	0.1
			1,2,3,4,7,8,9	ND	0.1
O8CDD - Total	1.4	0.1	O8CDF - Total	0.2	0.1

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	6.9 pg/g
13C-T4CDF	74		
13C-T4CDD	74	2,3,7,8 - TCDD TEQs (ND=0) =	6.8 pg/g
13C-P5CDF	60		
13C-P5CDD	64		
13C-H6CDF	15		
13C-H6CDD	66		
13C-H7CDF	17		
13C-H7CDD	65		
13C-08CDD	53		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

Approved

CLIENT SAMPLE I.D.:	97VN045			AXYS FILE: 2607	-58 R
CLIENT:	Hatfield Consultan	ts Ltd.		DATE: 02/A	pr/98
SAMPLE TYPE:	Tissue			METHOD NO.: DX-	T-03/Ver.2
SAMPLE SIZE:	4.77 g wet		A So luck Fat	INSTRUMENT: GC-	HRMS
% LIPID:	96			CONCENTRATION	N: pg/g
Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	7.0	0.3	T4CDF - Total	2.7	0.3
2,3,7,8	6.1	0.3	2,3,7,8	1.1	0.3
P5CDD - Total	3.4	0.3	P5CDF - Total	2.1	0.3
1,2,3,7,8	0.7	0.3	1,2,3,7,8	0.3	0.3
			2,3,4,7,8	0.3	0.3
H6CDD - Totai	0.8	0.6	H6CDF - Total	ND	0.6
1,2,3,4,7,8	ND	0.6	1,2,3,4,7,8	ND	0.6
1,2,3,6,7,8	ND	0.6	1,2,3,6,7,8	ND	0.6
1,2,3,7,8,9	ND	0.6	2,3,4,6,7,8	ND	0.6
			1,2,3,7,8,9	ND	0.6
H7CDD - Total	ND	1.0	H7CDF - Total	ND	1.0
1,2,3,4,6,7,8	ND	1.0	1,2,3,4,6,7,8	ND	1.0
			1,2,3,4,7,8,9	ND	1.0
O8CDD - Total	2.2	1.7	O8CDF - Total	ND	1.7

Surrogate Standards	% Recovery
13C-T4CDF	60
13C-T4CDD	60
13C-P5CDF	58
13C-P5CDD	56
13C-H6CDF	63
13C-H6CDD	61
13C-H7CDF	55

2378-	TCDD	TEQs	(Using	ΝΔΤΟ	I-TEFs)

2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	7.0 pg/g
2,3,7,8 - TCDD TEQs (ND=0) =	6.7 pg/g

1. SDL = Sample Detection Limit

2. ND = Not detected

13C-H7CDD

13C-08CDD

3. NDR = Peak detected but did not meet quantification criteria

51

48

4. Concentrations are recovery corrected.

nCklamitt Approved

MAXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., (ANADA VBL 3S8 TEL (250) 656-0881 FAX (250) 656-4511

CLIENT SAMPLE I.D.: 97VN047

CLIENT: Hatfield Consultants Ltd.

DATE: 24/Mar/98 A So SAMPLE TYPE: Whole Blood METHOD NO .: DX-B-06/Ver.1 Human Blood Males >25 Years INSTRUMENT: GC-HRMS SAMPLE SIZE: 43.8 g (Whole Blood) % LIPID: 0.29 CONCENTRATION IN: pg/g blood

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	0.1	0.01	T4CDF - Total	ND	0.01
2,3,7,8	0.1	0.01	2,3,7,8	ND	0.01
P5CDD - Total	ND	0.01	P5CDF - Total	0.01	0.01
1,2,3,7,8	NDR(0.01)	0.01	1,2,3,7,8	ND	0.01
			2,3,4,7,8	0.01	0.01
H6CDD - Totai	0.02	0.01	H6CDF - Total	0.05	0.01
1,2,3,4,7,8	ND	0.01	1,2,3,4,7,8	0.03	0.01
1,2,3,6,7,8	0.02	0.01	1,2,3,6,7,8	0.02	0.01
1,2,3,7,8,9	NDR(0.01)	0.01	2,3,4,6,7,8	ND	0.01
			1,2,3,7,8,9	ND	0.01
H7CDD - Totai	0.03	0.01	H7CDF - Total	ND	0.01
1,2,3,4,6,7,8	0.03	0.01	1,2,3,4,6,7,8	NDR(0.05)	0.01
			1,2,3,4,7,8,9	ND	0.01
O8CDD - Total	0.15	0.01	O8CDF - Total	NDR(0.01)	0.01

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	0.11 pg/g blood
13C-T4CDF	71		
13C-T4CDD	84	2,3,7,8 - TCDD TEQs (ND=0) =	0.10 pg/g blood
13C-P5CDF	61		
13C-P5CDD	75		
13C-H6CDF	71		
13C-H6CDD	70		
13C-H7CDF	62		
13C-H7CDD	55		
13C-08CDD	44		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

McHamilton

AXYS FILE: 2607-59

CLIENT SAMPLE I.D.: 97VN047

CLIENT: Hatfield Consultants Ltd.		DATE: 24/Mar/ 98
SAMPLE TYPE: Whole Blood	A So Human Blood	METHOD NO.: DX-B-06/Ver.1
SAMPLE SIZE: 43.8 g	Males >25 Years	INSTRUMENT: GC-HRMS
% LIPID: 0.29	(Lipid Basis)	CONCENTRATION IN: pg/g lipid

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)	
T4CDD - Total	31	3.4	T4CDF - Total	ND	3.4	
2,3,7,8	31	3.4	2,3,7,8	ND	3.4	
P5CDD - Total	ND	3.4	P5CDF - Total	3.4	3.4	
1,2,3,7,8	NDR(3.4)	3.4	1,2,3,7,8	ND	3.4	
			2,3,4,7,8	3.4	3.4	
H6CDD - Total	6.9	3.4	H6CDF - Total	17	3.4	-
1,2,3,4,7,8	ND	3.4	1,2,3,4,7,8	10	3.4	
1,2,3,6,7,8	6.9	3.4	1,2,3,6,7,8	6.9	3.4	
1,2,3,7,8,9	NDR(3.4)	3.4	2,3,4,6,7,8	ND	3.4	
			1,2,3,7,8,9	ND	3.4	
H7CDD - Total	10	3.4	H7CDF - Total	ND	3.4	
1,2,3,4,6,7,8	10	3.4	1,2,3,4,6,7,8	NDR(17)	3.4	e e
			1,2,3,4,7,8,9	ND	3.4	
O8CDD - Total	52	3.4	O8CDF - Total	NDR(3.4)	3.4	

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	37.2 pg/g lipid
13C-T4CDF	. 71		
13C-T4CDD	84	2,3,7,8 - TCDD TEQs (ND=0) =	35.3 pg/g lipid
13C-P5CDF	61		
13C-P5CDD	75		
13C-H6CDF	71		
13C-H6CDD	70		
13C-H7CDF	62		
13C-H7CDD	55		
13C-08CDD	44		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Manilton

AXYS FILE: 2607-59

CLIENT SAMPLE I.D.: 97VN048

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Whole Blood

SAMPLE SIZE: 40.8 g

% LIPID: 0.28

A So Human Blood Females >25 Years (Whole Blood)

AXYS FILE: 2607-60 DATE: 24/Mar/98

METHOD NO .: DX-B-06/Ver.1

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g blood

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	0.03	0.01	T4CDF - Total	ND	0.01
2,3,7,8	0.03	0.01	2,3,7,8	ND	0.01
P5CDD - Totai	ND	0.01	P5CDF - Total	ND	0.01
1,2,3,7,8	ND	0.01	1,2,3,7,8	ND	0.01
			2,3,4,7,8	ND	0.01
H6CDD - Total	ND	0.01	H6CDF - Total	ND	0.01
1,2,3,4,7,8	ND	0.01	1,2,3,4,7,8	ND	0.01
1,2,3,6,7,8	ND	0.01	1,2,3,6,7,8	ND	0.01
1,2,3,7,8,9	ND	0.01	2,3,4,6,7,8	ND	0.01
			1,2,3,7,8,9	ND	0.01
H7CDD - Total	0.04	0.01	H7CDF - Total	ND	0.01
1,2,3,4,6,7,8	0.04	0.01	1,2,3,4,6,7,8	NDR(0.02)	0.01
			1,2,3,4,7,8,9	NDR(0.01)	0.01
O8CDD - Totai	0.18	0.01	O8CDF - Total	NDR(0.02)	0.01

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	0.04 pg/g blood
13C-T4CDF	74		
13C-T4CDD	92	2,3,7,8 - TCDD TEQs (ND=0) =	0.03 pg/g blood
13C-P5CDF	64		
13C-P5CDD	70		
13C-H6CDF	85		
13C-H6CDD	84		
13C-H7CDF	78		
13C-H7CDD	84		
13C-08CDD	78		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

McKlamilton.

(

CLIENT SAMPLE I.D.: 97VN048

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Whole BloodA So
Human BloodMETHOD NO.: DX-B-06/Ver.1SAMPLE SIZE: 40.8 gFemales >25 Years
(Lipid Basis)INSTRUMENT: GC-HRMS
CONCENTRATION IN: pg/g lipid

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)	
T4CDD - Total	11	3.6	T4CDF - Total	ND	3.6	
2,3,7,8	11	3.6	2,3,7,8	ND	3.6	
P5CDD - Total	ND	3.6	P5CDF - Total	ND	3.6	•.
1,2,3,7,8	ND	3.6	1,2,3,7,8	ND	3.6	
			2,3,4,7,8	ND	3.6	
H6CDD - Total	ND	3.6	H6CDF - Total	ND	3.6	
1,2,3,4,7,8	ND	3.6	1,2,3,4,7,8	ND	3.6	
1,2,3,6,7,8	ND	3.6	1,2,3,6,7,8	ND	3.6	· ·
1,2,3,7,8,9	ND	3.6	2,3,4,6,7,8	ND	3.6	
			1,2,3,7,8,9	ND	3.6	
H7CDD - Total	14	3.6	H7CDF - Total	ND	3.6	
1,2,3,4,6,7,8	14	3.6	1,2,3,4,6,7,8	NDR(7.1)	3.6	
-,_,_,_,_,_,_			1,2,3,4,7,8,9	NDR(3.6)	3.6	-
O8CDD - Total	64	3.6	O8CDF - Total	NDR(7.1)	3.6	

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	14.3 pg/g lipid
13C-T4CDF	74		
13C-T4CDD	92	2,3,7,8 - TCDD TEQs (ND=0) =	10.9 pg/g lipid
13C-P5CDF	64		
13C-P5CDD	70		
13C-H6CDF	85		
13C-H6CDD	84		
13C-H7CDF	78		
13C-H7CDD	84		
13C-08CDD	78		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Approved

AXYS FILE: 2607-60

DATE: 24/Mar/98

CLIENT SAMPLE I.D.: 97VN049

SAMPLE TYPE: Whole Blood

SAMPLE SIZE: 36.3 g

% LIPID: 0.29

CLIENT: Hatfield Consultants Ltd.

td. DATE: 24/Mar/98
A So
Human Blood
Males 12 – 25 Years
(Whole Blood)
CONCENTRATION IN: pg/g blood

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	0.06	0.01	T4CDF - Total	ND	0.01
2,3,7,8	0.06	0.01	2,3,7,8	ND	0.01
P5CDD - Total	ND	0.01	P5CDF - Total	ND	0.01
1,2,3,7,8	ND	0.01	1,2,3,7,8	ND	0.01
			2,3,4,7,8	ND	0.01
H6CDD - Total	ND	0.01	H6CDF - Total	0.04	0.01
1,2,3,4,7,8	NDR(0.02)	0.01	1,2,3,4,7,8	0.04	0.01
1,2,3,6,7,8	NDR(0.01)	0.01	1,2,3,6,7,8	NDR(0.02)	0.01
1,2,3,7,8,9	NDR(0.03)	0.01	2,3,4,6,7,8	ND	0.01
			1,2,3,7,8,9	ND	0.01
H7CDD - Total	0.03	0.01	H7CDF - Total	0.07	0.01
1,2,3,4,6,7,8	0.03	0.01	1,2,3,4,6,7,8	0.07	0.01
			1,2,3,4,7,8,9	NDR(0.01)	0.01
O8CDD - Total	NDR(0.34)	0.01	O8CDF - Total	0.22	0.01

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) = 0.07 pg/g blood
13C-T4CDF	28	
13C-T4CDD	29	2,3,7,8 - TCDD TEQs (ND=0) = 0.07 pg/g blood
13C-P5CDF	17	
13C-P5CDD	18	
13C-H6CDF	22	
13C-H6CDD	18	1. Surrogate recoveries are low, however, there is no sample
13C-H7CDF	11	available to repeat the analysis.
13C-H7CDD	10	
13C-08CDD	10	

Maniton

AXYS FILE: 2607-61

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

CLIENT SAMPLE I.D.: 97VN049

CLIENT: Hatfield Consultants Ltd.

DATE: 24/Mar/98 A So SAMPLE TYPE: Whole Blood METHOD NO .: DX-B-06/Ver.1 Human Blood Males 12 - 25 Years SAMPLE SIZE: 36.3 g **INSTRUMENT: GC-HRMS** (Lipid Basis) % LIPID: 0.29 CONCENTRATION IN: pg/g lipid

Dioxin s	Concentration	(SDL)	Furans	Concentration	(SDL)	
T4CDD - Total	21	3.4	T4CDF - Total	ND	3.4	-
2,3,7,8	21	3.4	2,3,7,8	ND	3.4	
P5CDD - Total	ND	3.4	P5CDF - Total	ND	3.4	-
1,2,3,7,8	ND	3.4	1,2,3,7,8	ND	3.4	÷,
			2,3,4,7,8	ND	3.4	1
H6CDD - Total	ND	3.4	H6CDF - Total	14	3.4	
1,2,3,4,7,8	NDR(6.9)	3.4	1,2,3,4,7,8	14	3.4	
1,2,3,6,7,8	NDR(3.4)	3.4	1,2,3,6,7,8	NDR(6.9)	3.4	-
1,2,3,7,8,9	NDR(10)	3.4	2,3,4,6,7,8	ND	3.4	
			1,2,3,7,8,9	ND	3.4	
						-
H7CDD - Total	10	3.4	H7CDF - Total	24	3.4	
1,2,3,4,6,7,8	10	3.4	1,2,3,4,6,7,8	24	3.4	-
			1,2,3,4,7,8,9	NDR(3.4)	3.4	Ť
O8CDD - Totai	NDR(120)	3.4	O8CDF - Totai	76	3.4	

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) = 25.5 pg/g lipid
13C-T4CDF	28	
13C-T4CDD	29	2,3,7,8 - TCDD TEQs (ND=0) = 22.5 pg/g lipid
13C-P5CDF	17	
13C-P5CDD	18	
13C-H6CDF	22	
13C-H6CDD	18	1. Surrogate recoveries are low, however, there is no sample
13C-H7CDF	11	available to repeat the analysis.
13C-H7CDD	10	
13C-08CDD	10	

Mamilto

Approved

AXYS FILE: 2607-61

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

MO AXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., (ANADA V8L 358 TEL (250) 656-0881 FAX (250) 656-4511

CLIENT SAMPLE I.D.: 97VN050

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Whole Blood

SAMPLE SIZE: 43.8 g

% LIPID: 0.26

A So Human Blood Females 12 - 25 Years (Whole Blood)

DATE: 24/Mar/98

AXYS FILE: 2607-62

METHOD NO .: DX-B-06/Ver.1

INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g blood

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)	
T4CDD - Total	0.03	0.01	T4CDF - Total	ND	0.01	
2,3,7,8	0.03	0.01	2,3,7,8	ND	0.01	
P5CDD - Total	ND	0.01	P5CDF - Total	ND	0.01	
1,2,3,7,8	ND	0.01	1,2,3,7,8	ND	0.01	
			2,3,4,7,8	ND	0.01	
H6CDD - Totai	ND	0.01	H6CDF - Total	ND	0.01	
1,2,3,4,7,8	ND	0.01	1,2,3,4,7,8	NDR(0.01)	0.01	
1,2,3,6,7,8	ND	0.01	1,2,3,6,7,8	ND	0.01	
1,2,3,7,8,9	ND	0.01	2,3,4,6,7,8	ND	0.01	
			1,2,3,7,8,9	ND	0.01	
H7CDD - Total	0.05	0.01	H7CDF - Total	0.03	0.01	
1,2,3,4,6,7,8	0.02	0.01	1,2,3,4,6,7,8	0.03	0.01	
			1,2,3,4,7,8,9	ND	0.01	
08CDD - Total	0.13	0.01	O8CDF - Total	ND	0.01	

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) = 0	.04 pg/g blood
13C-T4CDF	71		
13C-T4CDD	78	2,3,7,8 - TCDD TEQs (ND=0) = 0	.03 pg/g blood
13C-P5CDF	60		
13C-P5CDD	66		
13C-H6CDF	84		
13C-H6CDD	84		
13C-H7CDF	84		
13C-H7CDD	79		
13C-08CDD	76		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

McKamilton

CLIENT SAMPLE I.D.: 97VN050

CLIENT: Hatfield Consultants Ltd.

A So A So Human Blood Human Blood Females 12 – 25 Years (Lipid Basis)

AXYS FILE: 2607-62 DATE: 24/Mar/98 A So Human Blood Pmales 12 – 25 Years (Lipid Basis)

CONCENTRATION IN: pg/g lipid

Dioxins Concentration (SDL) Furans Concentration (SDL) T4CDD - Total 12 3.8 **T4CDF - Total** ND 3.8 12 3.8 2,3,7,8 2,3,7,8 ND 3.8 P5CDD - Total ND 3.8 P5CDF - Total ND 3.8 3.8 1,2,3,7,8 ND 1,2,3,7,8 ND 3.8 2,3,4,7,8 ND 3.8 H6CDD - Total ND 3.8 **H6CDF - Total** ND 3.8 ND 3.8 NDR(3.8) 1,2,3,4,7,8 1,2,3,4,7,8 3.8 ND 3.8 1,2,3,6,7,8 ND 1,2,3,6,7,8 3.8 1,2,3,7,8,9 ND 3.8 2,3,4,6,7,8 ND 3.8 1,2,3,7,8,9 ND 3.8 **H7CDF - Total** H7CDD - Total 19 3.8 12 3.8 7.7 3.8 1,2,3,4,6,7,8 1,2,3,4,6,7,8 12 3.8 1,2,3,4,7,8,9 ND 3.8 **O8CDF** - Total **O8CDD - Total** 50 3.8 ND 3.8

Surrogate Standards	% Recovery	2,3,7,8 - TCDD TEQs (Using NATO I-TEFs)	
		2,3,7,8 - TCDD TEQs (ND=1/2 DL) =	15.4 pg/g lipid
13C-T4CDF	71		
13C-T4CDD	78	2,3,7,8 - TCDD TEQs (ND=0) =	11.8 pg/g lipid
13C-P5CDF	60		
13C-P5CDD	66		
13C-H6CDF	84		
13C-H6CDD	84		
13C-H7CDF	84		
13C-H7CDD	79		
13C-08CDD	76		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

4. Concentrations are recovery corrected.

Mamilton

MAXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA V8L 358 TEL (250) 656-0881 FAX (250) 656-4511

Appendix III

Laboratory Quality Control Sample Reports

l

CLIENT SAMPLE I.D.: Procedural Blank

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Blank

SAMPLE SIZE: 50.0 g

% LIPID: 0.29

AXYS FILE: DX-B-BLK 77 DATE: 24/Mar/98 METHOD NO.: DX-B-06/Ver.1 INSTRUMENT: GC-HRMS CONCENTRATION IN: pg/g blood

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	ND	0.01	T4CDF - Total	ND	0.01
2,3,7,8	ND	0.01	2,3,7,8	ND	0.01
P5CDD - Total	ND	0.01	P5CDF - Total	ND	0.01
1,2,3,7,8	ND	0.01	1,2,3,7,8	ND	0.01
			2,3,4,7,8	ND	0.01
H6CDD - Total	ND	0.01	H6CDF - Total	ND	0.01
1,2,3,4,7,8	ND	0.01	1,2,3,4,7,8	ND	0.01
1,2,3,6,7,8	ND	0.01	1,2,3,6,7,8	ND	0.01
1,2,3,7,8,9	ND	0.01	2,3,4,6,7,8	ND	0.01
			1,2,3,7,8,9	ND	0.01
H7CDD - Total	0.02	0.01	H7CDF - Total	ND	0.01
1,2,3,4,6,7,8	0.02	0.01	1,2,3,4,6,7,8	ND	0.01
			1,2,3,4,7,8,9	ND	0.01
O8CDD - Total	0.3	0.01	O8CDF - Total	ND	0.01

Surrogate Standards	% Recovery	
13C-T4CDF	78	
13C-T4CDD	84	
13C-P5CDF	. 71	
13C-P5CDD	71	
13C-H6CDF	91	
13C-H6CDD	87	
13C-H7CDF	82	
13C-H7CDD	74	
13C-08CDD	85	

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

Mc Jameson

CLIENT SAMPLE I.D.: Procedural Blank

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Blank

SAMPLE SIZE: 50.0 g

% LIPID: 0.29

AXYS FILE: DX-B-BLK 77 DATE: 24/Mar/98 METHOD NO.: DX-B-06/Ver.1 INSTRUMENT: GC-HRMS CONCENTRATION IN: pg/g lipid

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	ND	3.4	T4CDF - Total	ND	3.4
2,3,7,8	ND	3.4	2,3,7,8	ND	3.4
P5CDD - Total	ND	3.4	P5CDF - Total	ND	3.4
1,2,3,7,8	ND	3.4	1,2,3,7,8	ND	3.4
			2,3,4,7,8	ND	3.4
H6CDD - Total	ND	3.4	H6CDF - Total	ND	3.4
1,2,3,4,7,8	ND	3.4	1,2,3,4,7,8	ND	3.4
1,2,3,6,7,8	ND	3.4	1,2,3,6,7,8	ND	3.4
1,2,3,7,8,9	ND	3.4	2,3,4,6,7,8	ND	3.4
			1,2,3,7,8,9	ND	3.4
H7CDD - Total	6.9	3.4	H7CDF - Total	ND	3.4
1,2,3,4,6,7,8	6.9	3.4	1,2,3,4,6,7,8	ND	3.4
			1,2,3,4,7,8,9	ND	3.4
O8CDD - Total	110	3.4	O8CDF - Total	ND	3.4

Surrogate Standards	% Recovery		
13C-T4CDF	78		
13C-T4CDD	84		
13C-P5CDF	71		
13C-P5CDD	71		
13C-H6CDF	91		
13C-H6CDD	87		
13C-H7CDF	82		
13C-H7CDD	74		
13C-08CDD	85		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

Manilton Approved

CLIENT SAMPLE I.D.: Procedural Blank

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Blank

SAMPLE SIZE: 10.0 g

AXYS FILE: DX-S-BLK 1717 L DATE: 02/Mar/98 METHOD NO.: DX-S-01/Ver.3 INSTRUMENT: GC-HRMS CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	ND	0.1	T4CDF - Total	ND	0.1
2,3,7,8	ND	0.1	2,3,7,8	ND	0.1
P5CDD - Total	ND	0.1	P5CDF - Total	ND	0.1
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	ND	0.3	H6CDF - Total	ND	0.3
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	ND	0.3
1,2,3,6,7,8	ND	0.3	1,2,3,6,7,8	ND	0.3
1,2,3,7,8,9	ND	0.3	2,3,4,6,7,8	ND	0.3
			1,2,3,7,8,9	ND	0.3
H7CDD - Total	ND	0.5	H7CDF - Total	ND	0.5
1,2,3,4,6,7,8	ND	0.5	1,2,3,4,6,7,8	ND	0.5
			1,2,3,4,7,8,9	ND	0.5
O8CDD - Total	ND	0.8	O8CDF - Total	ND	0.8

Surrogate Standards	% Recovery		
13C-T4CDF	63		
13C-T4CDD	69		
13C-P5CDF	61		
13C-P5CDD	63		
13C-H6CDF	74		
13C-H6CDD	68		
13C-H7CDF	63		
13C-H7CDD	57		
13C-08CDD	44		

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

Manulton

CLIENT SAMPLE I.D.: Procedural Blank

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Blank

SAMPLE SIZE: 5.00 g

AXYS FILE: DX-T-BLK 1734 DATE: 13/Mar/98 METHOD NO.: DX-T-03/Ver.2 INSTRUMENT: GC-HRMS CONCENTRATION IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)	
T4CDD - Total	ND	0.2	T4CDF - Total	ND	0.2	. مر.
2,3,7,8	ND	0.2	2,3,7,8	ND	0.2	
P5CDD - Total	ND	0.1	P5CDF - Total	ND	0.1	
1,2,3,7,8	ND	0.1	1,2,3,7,8	ND	0.1	
			2,3,4,7,8	ND	0.1	· ,
H6CDD - Total	ND	0.2	H6CDF - Total	ND	0.2	
1,2,3,4,7,8	ND	0.2	1,2,3,4,7,8	ND	0.2	
1,2,3,6,7,8	ND	0.2	1,2,3,6,7,8	ND	0.2	
1,2,3,7,8,9	ND	0.2	2,3,4,6,7,8	ND	0.2	1
			1,2,3,7,8,9	ND	0.2	
H7CDD - Total	ND	0.2	H7CDF - Total	ND	0.2	
1,2,3,4,6,7,8	ND	0.2	1,2,3,4,6,7,8	ND	0.2	ĺ,
			1,2,3,4,7,8,9	ND	0.2	
O8CDD - Total	0.6	0.1	O8CDF - Total	0.3	0.1	

Surrogate Standards	% Recovery
13C-T4CDF	77
13C-14CDF 13C-T4CDD	85
13C-P5CDF	76
13C-P5CDP	82
13C-H6CDF	90
13C-H6CDD	89
13C-H7CDF	85
13C-H7CDD	85
13C-08CDD	79

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

Approved

CLIENT SAMPLE I.D.:	Procedural Blank	AXYS FILE:	DX-T-BLK 1744
CLIENT:	Hatfield Consultants Ltd.	DATE:	02/Apr/98
SAMPLE TYPE:	Blank	METHOD NO.:	DX-T-03/Ver.2
SAMPLE SIZE:	10.0 g	INSTRUMENT	: GC-HRMS
		CONCENTRA	ΓΙΟΝ IN: pg/g

Dioxins	Concentration	(SDL)	Furans	Concentration	(SDL)
T4CDD - Total	ND	0.1	T4CDF - Total	ND	0.1
2,3,7,8	ND	0.1	2,3,7,8	ND	0.1
P5CDD - Total	ND	0.2	P5CDF - Total	ND	0.1
1,2,3,7,8	ND	0.2	1,2,3,7,8	ND	0.1
			2,3,4,7,8	ND	0.1
H6CDD - Total	ND	0.3	H6CDF - Total	ND	0.3
1,2,3,4,7,8	ND	0.3	1,2,3,4,7,8	ND	0.3
1,2,3,6,7,8	ND	0.3	1,2,3,6,7,8	ND	0.3
1,2,3,7,8,9	ND	0.3	2,3,4,6,7,8	ND	0.3
			1,2,3,7,8,9	ND	0.3
H7CDD - Total	ND	0.5	H7CDF - Total	ND	0.5
1,2,3,4,6,7,8	ND	0.5	1,2,3,4,6,7,8	ND	0.5
			1,2,3,4,7,8,9	ND	0.5
O8CDD - Total	ND	0.8	O8CDF - Total	ND	0.8

Surrogate Standards	% Recovery
13C-T4CDF	52
13C-T4CDD	59
13C-P5CDF	51
13C-P5CDD	51
13C-H6CDF	58
13C-H6CDD	60
13C-H7CDF	49
13C-H7CDD	47
13C-08CDD	46

1. SDL = Sample Detection Limit

2. ND = Not detected

3. NDR = Peak detected but did not meet quantification criteria

McHamilton Approved

CLIENT SAMPLE I.D.: Spiked Matrix

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 10.0 g

AXYS FILE: DX-S-SPM 902 DATE: 02/Mar/98 METHOD NO.: DX-S-01/Ver.3 INSTRUMENT: GC-HRMS

CONCENTRATION IN: pg/g

Dioxins	Determined	Expected	% Recovery	Furans	Determined	Expected	% Recovery
T4CDD - Total				T4CDF - Total			
2,3,7,8	1.8	1.8	100	2,3,7,8	1.8	2.0	90
P5CDD - Totai				P5CDF - Total			
1,2,3,7,8	5.4	5.0	108	1,2,3,7,8	5.0	4.6	109
				2,3,4,7,8	4.3	4.6	93
H6CDD - Total				H6CDF - Total			
1,2,3,4,7,8	4.8	5.4	89	1,2,3,4,7,8	4.8	4.6	104
1,2,3,6,7,8	4.9	5.0	98	1,2,3,6,7,8	5.2	4.6	113
1,2,3,7,8,9	3.3	5.2	63	2,3,4,6,7,8	3.2	4.6	70
				1,2,3,7,8,9	2.9	4.6	63
H7CDD - Total				H7CDF - Total			
1,2,3,4,6,7,8	5.1	5.5	93	1,2,3,4,6,7,8	5.2	6.6	79
				1,2,3,4,7,8,9	2.8	4.6	61
O8CDD - Total	14	14	100	O8CDF - Total	8.2	7.8	105

Surrogate Standards	% Recovery		
13C-T4CDF	52		
13C-T4CDD	51		
13C-P5CDF	51		
13C-P5CDD	47		
13C-H6CDF	55		
13C-H6CDD	53		
13C-H7CDF	45		
13C-H7CDD	33		
13C-08CDD	25		

1. Concentrations are recovery corrected.

McKlamilton Approved

MAXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA V8L 358 TEL (250) 656-0881 FAX (250) 656-4511

CLIENT SAMPLE I.D.: Spiked Matrix

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Tissue

SAMPLE SIZE: 10.0 g

AXYS FILE: DX-T-SPM 918 DATE: 13/Mar/98 METHOD NO.: DX-T-03/Ver.2 INSTRUMENT: GC-HRMS CONCENTRATION IN: pg/g

Dioxins	Determined	Expected	% Recovery	Furans	Determined	Expected	% Recovery
T4CDD - Total				T4CDF - Total			
2,3,7,8	1.9	1.8	106	2,3,7,8	4.4	4.4	100
P5CDD - Total				P5CDF - Total			
1,2,3,7,8	5.9	5.0	118	1,2,3,7,8	4.9	4.6	107
				2,3,4,7,8	5.2	4.6	113
H6CDD - Total				H6CDF - Total			
1,2,3,4,7,8	5.4	5.4	100	1,2,3,4,7,8	5.2	4.6	113
1,2,3,6,7,8	5.6	5.0	112	1,2,3,6,7,8	5.2	4.6	113
1,2,3,7,8,9	4.9	5.2	94	2,3,4,6,7,8	4.8	4.6	104
				1,2,3,7,8,9	3.9	4.6	85
H7CDD - Total				H7CDF - Total			
1,2,3,4,6,7,8	4.3	4.4	98	1,2,3,4,6,7,8	4.7	4.6	102
				1,2,3,4,7,8,9	4.7	4.6	102
O8CDD - Total	7.2	7.4	97	O8CDF - Total	7.8	7.4	105

Surrogate Standards	% Recovery
13C-T4CDF	71
13C-T4CDD	79
13C-P5CDF	64
13C-P5CDD	67
13C-H6CDF	78
13C-H6CDD	78
13C-H7CDF	66
13C-H7CDD	64
13C-08CDD	51

McHamilton

CLIENT SAMPLE I.D.: Spiked Matrix

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Whole Blood

SAMPLE SIZE: 38.6 g

% LIPID: 0.42

AXYS FILE: DX-B-SPM 922 DATE: 24/Mar/98 METHOD NO.: DX-B-06/Ver.1 INSTRUMENT: GC-HRMS ٩,

CONCENTRATION IN: pg/g lipid

Dioxins	Determined	Expected	% Recovery	Furans	Determined	Expected	% Recovery
T4CDD - Total				T4CDF - Total			
2,3,7,8	2.4	2.4	100	2,3,7,8	12	10	125
P5CDD - Total				P5CDF - Total			
1,2,3,7,8	14	17	86	1,2,3,7,8	7.1	7.1	100
				2,3,4,7,8	14	12	120
H6CDD - Total				H6CDF - Total			
1,2,3,4,7,8	12	12	100	1,2,3,4,7,8	14	14	100
1,2,3,6,7,8	67	69	97	1,2,3,6,7,8	14	14	100
1,2,3,7,8,9	14	19	75	2,3,4,6,7,8	9.5	9.5	100
				1,2,3,7,8,9	7.0	9.5	74
H7CDD - Total				H7CDF - Total			
1,2,3,4,6,7,8	76	71	107	1,2,3,4,6,7,8	14	17	86
				1,2,3,4,7,8,9	7.1	7.1	100
O8CDD - Total	405	405	100	O8CDF - Total	19	17	114

Surrogate Standards	% Recovery
13C-T4CDF	52
13C-T4CDD	60
13C-P5CDF	45
13C-P5CDD	52
13C-H6CDF	53
13C-H6CDD	49
13C-H7CDF	43
13C-H7CDD	35
13C-08CDD	25

Mcdamilton

CLIENT SAMPLE I.D.: Spiked Matrix

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Whole Blood

SAMPLE SIZE: 38.6 g

% LIPID: 0.42

AXYS FILE: DX-B-SPM 922 DATE: 24/Mar/98 METHOD NO.: DX-B-06/Ver.1 INSTRUMENT: GC-HRMS CONCENTRATION IN: pg/g blood

Dioxins	Determined	Expected	% Recovery	Furans	Determined	Expected	% Recovery
T4CDD - Total				T4CDF - Total			
2,3,7,8	0.01	0.01	100	2,3,7,8	0.05	0.04	125
P5CDD - Total				P5CDF - Total			
1,2,3,7,8	0.06	0.07	86	1,2,3,7,8	0.03	0.03	100
				2,3,4,7,8	0.06	0.05	120
H6CDD - Totai				H6CDF - Total			
1,2,3,4,7,8	0.05	0.05	100	1,2,3,4,7,8	0.06	0.06	100
1,2,3,6,7,8	0.28	0.29	97	1,2,3,6,7,8	0.06	0.06	100
1,2,3,7,8,9	0.06	0.08	75	2,3,4,6,7,8	0.04	0.04	100
				1,2,3,7,8,9	0.03	0.04	75
H7CDD - Total				H7CDF - Total			
1,2,3,4,6,7,8	0.32	0.30	107	1,2,3,4,6,7,8	0.06	0.07	86
				1,2,3,4,7,8,9	0.03	0.03	100
O8CDD - Total	1.7	1.7	100	O8CDF - Total	0.08	0.07	114

Surrogate Standards	% Recovery
13C-T4CDF	52
13C-T4CDD	60
13C-P5CDF	45
13C-P5CDD	52
13C-H6CDF	53
13C-H6CDD	49
13C-H7CDF	43
13C-H7CDD	35
13C-08CDD	25

Approved

CLIENT SAMPLE I.D.:	Spiked Matrix	AXYS FILE:	DX-T-SPM 926
CLIENT:	Hatfield Consultants Ltd.	DATE:	02/Apr/98
SAMPLE TYPE:	Tissue	METHOD NO.:	DX-T-03/Ver
SAMPLE SIZE:	10.8 g	INSTRUMENT	: GC-HRMS
		CONCENTRA	FION IN: pg/g

Dioxins	Determined	Expected	% Recovery	Furans	Determined	Expected	% Recovery	
T4CDD - Total				T4CDF - Total				V
2,3,7,8	2.1	1.8	117	2,3,7,8	5.1	4.4	116	
P5CDD - Total				P5CDF - Total				,
1,2,3,7,8	6.3	5.0	126	1,2,3,7,8	5.0	4.6	109	
				2,3,4,7,8	5.5	4.6	120	
H6CDD - Total				H6CDF - Total				
1,2,3,4,7,8	5.8	5.4	107	1,2,3,4,7,8	5.3	4.6	115	
1,2,3,6,7,8	6.1	5.0	122	1,2,3,6,7,8	5.2	4.6	113	
1,2,3,7,8,9	5.2	5.2	100	2,3,4,6,7,8	4.7	4.6	102	
				1,2,3,7,8,9	4.5	4.6	98	
H7CDD - Total				H7CDF - Total				
1,2,3,4,6,7,8	4.3	4.4	98	1,2,3,4,6,7,8	4.6	4.6	100	٠
				1,2,3,4,7,8,9	4.9	4.6	107	
O8CDD - Total	7.3	7.4	99	O8CDF - Total	7.2	7.4	97	-

Surrogate Standards	% Recovery
13C-T4CDF	51
13C-T4CDD	52
13C-P5CDF	52
13C-P5CDD	48
13C-H6CDF	59
13C-H6CDD	55
13C-H7CDF	53
13C-H7CDD	48
13C-08CDD	49

1. Concentrations are recovery corrected.

MeHamilton Approved

MO AXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., (ANADA V8L 358 TEL (250) 656-0881 FAX (250) 656-4511

Appendix IV

Batch Summary Sheets

ł

])

ļ

l

Batch ID: DX-1739	Batch ID: DX-1739		<i>Date:</i> 24 March 1998		
Analysis Type: Dio	xins/Furans	Matrix Type	Matrix Type: Whole Blood		
	B	ATCH MAKEUP	P		
<i>Samples:</i> 2607	-59 -60 -61 -62	Blank:	DX-B-BLK 77		
		Reference d	Reference or Spike:		
			DX-B-SPM 922		
		Duplicate:			
Comments					

Copyright Axys Analytical Services Ltd. February 1993

Batch ID: DX-1717	Date: 02 March 1998		
Analysis Type: Dioxins/Furans	<i>Matrix Type:</i> Sediment		
BATCH	MAKEUP		
<i>Samples:</i> 2607 -50 AL -51 L -52 L -53 i	Blank: DX-S-BLK 1717 L		
	Reference or Spike:		
	DX-S-SPM 902		
	Duplicate:		
	2607-50 BL		
Comments			
·			

D

Copyright Axys Analytical Services Ltd. February 1993

Batch ID: DX-1734	Ļ	<i>Date:</i> 13 March 1998
Analysis Type: Dioxins/Furans		<i>Matrix Type:</i> Tissue
	B/	
<i>Samples:</i> 2607	-54 -55 -56 -57 A	Blank: DX-T-BLK 1734
	-58	Reference or Spike:
	DX-T-SPM 918	
		Duplicate:
		2607-57 B
Comments		

Copyright Axys Analytical Services Ltd. February 1993

ţ

)

Batch ID: DX-1744	Date: 02 April 1998	
Analysis Type: Dioxins/Furans	<i>Matrix Type:</i> Tissue	
BATCH	MAKEUP	
<i>Samples:</i> 2607 -58	<i>Blank:</i> DX-T-BLK 1744	
	Reference or Spike:	
	DX-T-SPM 926	
	Duplicate:	
Comments	L	

Copyright Axys Analytical Services Ltd. February 1993

ADDENDUM

Analytical Data on 1997 PCB/Pesticide Analyses - Reports and Batch Summary Sheets

(See Appendix A2.3 for Analytical Protocols)

Ş

ſ

. }

J

CL010

CLIENT SAMPLE I.D:	97VN003		AXYS ID:	2607-63
CLIENT:	Hatfield Consultants Ltd.		DATE:	22/Jun/98
SAMPLE TYPE:	Sediment	· · · · · · · · · · · · · · · · · · ·	METHOD	NO.: CL-S-01/Ver.1
SAMPLE SIZE:	14.5 g dry	A So Soil (10 – 30 cm)	INSTRUMENT: GC-MS F1/F2 RUNFILE ID: CL891734.D	
% MOISTURE:	4.3	Manioc Field		RATION IN: ng/g
Compounds	Concentration		(SDL)	· · · · · · · · · · · · · · · · · · ·
	ND		0.50	
Arocior 1242		ND	0.52	
Aroclor 1242 Aroclor 1254	·	ND ND	0.52 0.77	

Surrogate Standards	% Recovery
13C-PCB 101	40
13C-PCB 180	42

1. SDL = Sample Detection Limit

2. ND = Not Detected

3. NDR = Peak detected but did not meet quantification criteria

4. Data have not been blank corrected

5. Concentrations are recovery corrected

Dalepopuer Approved

MAXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA V8L 358 TEL (250) 656-0881 FAX (250) 656-4511

CLIENT SAMPLE I.D: 97VN015

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 14.3 g dry

% MOISTURE: 7.9

A So Soil (10 – 30 cm) Ploughed, Sweet Potato Field

AXYS ID: 2607-64

DATE: 18/Jun/98 REVISED: 22/Jun/98 METHOD NO.: CL-S-01/Ver.2

INSTRUMENT: GC-MS/GC-ECD RUNFILE ID: CL891735.D F3 RUNFILE ID: 53085 CONCENTRATION IN: ng/g

Compounds	Concentration	(SDL)
Hexachlorobenzene	ND	0.04
alpha HCH	ND	0.07
beta HCH	ND	0.2
gamma HCH	ND	0.3
Heptachior	ND	0.4
Aldrin	ND	0.08
Oxychlordane	ND	1.0
trans-Chlordane	ND	0.08
cis-Chlordane	ND	0.08
o,p'-DDE	ND	0.04
p,p'-DDE	2.0	0.006
trans-Nonachlor	ND	0.03
cis-Nonachlor	ND	0.04
o,p'-DDD	NDR 0.33	0.008
p,p'-DDD	1.1	1.2
o,p'-DDT	0.41	0.02
p,p'-DDT	1.0	0.02
Mirex	ND	0.07
Heptachlor Epoxide	ND	0.01
alpha-Endosulphan (I)	ND	0.01
Dieldrin	ND	0.01
Endrin	ND	0.02
Methoxychlor	ND	0.04

Surrogate Standards	% Recovery	
13C-Hexachlorobenzene	40	
13C-gamma HCH	45	1. SDL = Sa
13C-p,p'-DDE	49	2. ND = No
13C-p,p'-DDT	56	3. NDR = Pe
13C-Mirex	55	4. Data have
13C-PCB 101	54	5. Concentra
13C-PCB 180	62	
13C-PCB 209	77	
d4-alpha-Endosulphan	79	

1. SDL = Sample Detection Limit

2. ND = Not Detected

3. NDR = Peak detected but did not meet quantification criteria

4. Data have not been blank corrected

Approved

CLIENT SAMPLE I.D: 97VN003

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 14.5 g dry

% MOISTURE: 4.3

A So Soil (10 – 30 cm) Manioc Field AXYS ID: 2607-63

DATE: 18/Jun/98 REVISED: 22/Jun/98 METHOD NO.: CL-S-01/Ver.2

INSTRUMENT: GC-MS/GC-ECD RUNFILE ID: CL891734.D F3 RUNFILE ID: 53084 CONCENTRATION IN: ng/g

Compounds	Concentration	(SDL)
Hexachlorobenzene	ND	0.03
alpha HCH	ND	0.4
beta HCH	ND	0.6
gamma HCH	ND	0.6
Heptachlor	ND	0.9
Aldrin	ND	0.2
Oxychlordane	ND	0.4
trans-Chlordane	ND	0.1
cis-Chlordane	ND	0.09
o,p'-DDE	ND	0.03
p,p'-DDE	ND	0.06
trans-Nonachlor	ND	0.08
cis-Nonachlor	ND	0.08
o,p'-DDD	ND	0.02
p,p'-DDD	ND	0.02
o,p'-DDT	ND	0.04
p,p'-DDT	ND	0.04
Mirex	ND	0.07
Heptachlor Epoxide	ND	0.01
alpha-Endosulphan (I)	ND	0.01
Dieldrin	ND	0.01
Endrin	ND	0.04
Methoxychlor	ND	0.04

Surrogate Standards	% Recovery	
13C-Hexachlorobenzene	32	
13C-gamma HCH	35	1. SDL = Sample Detection Limit
13C-p,p'-DDE	33	2. ND = Not Detected
13C-p,p'-DDT	38	3. NDR = Peak detected but did not meet quantification criteria
13C-Mirex	41	4. Data have not been blank corrected
13C-PCB 101	40	5. Concentrations are recovery corrected
13C-PCB 180	42	
13C-PCB 209	57	
d4-alpha-Endosulphan	71	
-		Dale Howen

Approved

MO AXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA VOL 358 TEL (250) 656-0801 FAX (250) 656-4511

CL010

CLIENT SAMPLE I.D:	97VN015		AXYS ID:	2607-64		
CLIENT:	Hatfield Consultants Ltd.		DATE:	DATE: 22/Jun/98		
SAMPLE TYPE:	Sediment	A So	METHOD I	NO.: CL-S-01/Ver.1		
SAMPLE SIZE:	14.3 g dry			INSTRUMENT: GC-MS F1/F2 RUNFILE ID: CL891735.D		
% MOISTURE:	7.9 Potato Field		CONCENTRATION IN: ng/g			
Compounds	Concentration		(SDL)			
Arocior 1242	ND		0.39			
Aroclor 1254		ND	0.74			
Aroclor 1260	ND		0.65			

Surrogate Standards	% Recovery		
13C-PCB 101	54		
13C-PCB 180	62		

1. SDL = Sample Detection Limit

2. ND = Not Detected

3. NDR = Peak detected but did not meet quantification criteria

4. Data have not been blank corrected

5. Concentrations are recovery corrected

NOLNA

MAXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA V8L 358 TEL (250) 656-0881 FAX (250) 656-4511

CL010

CLIENT SAMPLE I.D:	Spiked Matrix	AXYS ID:	CL-S-SPM 1017
CLIENT:	Hatfield Consultants Ltd.	DATE:	22/Jun/98
SAMPLE TYPE:	Sediment	METHOD N	O.: CL-S-01/Ver.1
SAMPLE SIZE:	10.0 g	F1/F2 RUN	NT: GC-MS FILE ID: CL891739.D RATION IN: ng/g

Compounds	Determined	Expected	% Recovery
Arocior 1242	33	52	63
Aroclor 1254	38	48	79
Aroclor 1260	39	49	80

Surrogate Standards	% Recovery
13C-PCB 101	31
13C-PCB 180	42

Dale Approved

CL010

CLIENT SAMPLE I.D:	Procedural Blank	AXYS ID:	CL-S-BLK 1380
CLIENT:	Hatfield Consultants Ltd.	DATE:	22/Jun/98
SAMPLE TYPE:	Blank		IO.: CL-S-01/Ver.1
SAMPLE SIZE:	15.0 g	F1/F2 RUN	NT: GC-MS FILE ID: CL891732.D RATION IN: ng/g
Compounds	Concentration	(SDL)	
Aroclor 1242	ND	0.19	
Aroclor 1254	ŇD	0.74	
Aroclor 1260	ND	0.74	

Surrogate Standards	% Recovery
13C-PCB 101	66
13C-PCB 180	66

1. SDL = Sample Detection Limit

2. ND = Not Detected

3. NDR = Peak detected but did not meet quantification criteria

1. Homer

CLIENT SAMPLE I.D: Procedural Blank

CLIENT: Hatfield Consultants Ltd.

SAMPLE TYPE: Blank

SAMPLE SIZE: 15.0 g

AXYS ID: CL-S-BLK 1380

DATE: 18/Jun/98 REVISED: 22/Jun/98 METHOD NO.: CL-S-01/Ver.2

INSTRUMENT: GC-MS/GC-ECD F1/F2 RUNFILE ID: CL891732.D F3 RUNFILE ID: 53082 CONCENTRATION IN: ng/g

lettopuer

Approved

Compounds	Concentration	(SDL)
Hexachlorobenzene	ND	0.04
aipha HCH	ND	0.2
beta HCH	ND	0.4
gamma HCH	ND	0.3
Heptachlor	ND	0.7
Aldrin	ND	0.1
Oxychlordane	ND	0.2
trans-Chlordane	ND	0.07
cis-Chlordane	ND	0.07
o,p'-DDE	ND	0.04
p,p'-DDE	ND	0.02
trans-Nonachlor	ND	0.04
cis-Nonachlor	ND	0.05
o,p'-DDD	ND	0.01
p,p'-DDD	ND	0.01
o,p'-DDT	ND	0.009
p,p'-DDT	ND	0.02
Mirex	ND	0.08
Heptachlor Epoxide	ND	0.005
alpha-Endosulphan (l)	ND	0.006
Dieldrin	ND	0.005
Endrin	ND	0.009
Methoxychlor	ND	0.02

Surrogate Standards	% Recovery	
-		
13C-Hexachlorobenzene	53	
13C-gamma HCH	56	1. SDL = Sample Detection Limit
13C-p,p'-DDE	55	2. ND = Not Detected
13C-p,p'-DDT	61	NDR = Peak detected but did not meet quantification criteria
13C-Mirex	65	4. Concentrations are recovery corrected
13C-PCB 101	66	
13C-PCB 180	66	
13C-PCB 209	88	
d4-alpha-Endosulphan	81	

MAXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA V8L 358 TEL (250) 656-0881 FAX (250) 656-4511

PCB/PESTICIDE ANALYSIS REPORT

CLIENT SAMPLE I.D: Spiked Matrix

CLIENT: Hatfieid Consultants Ltd.

SAMPLE TYPE: Sediment

SAMPLE SIZE: 10.0 g

AXYS ID: CL-S-SPM 1017

DATE: 18/Jun/98 REVISED: 22/Jun/98 METHOD NO.: CL-S-01/Ver.2

INSTRUMENT: GC-MS/GC-ECD RUNFILE ID: CL891739.D F3 RUNFILE ID: 53083 CONCENTRATION IN: ng/g

Compounds	Determined	Expected	% Recovery
Hexachlorobenzene	4.8	5.8	82
alpha HCH	4.9	6.0	82
beta HCH	6.9	8.3	83
gamma HCH	4.8	5.9	81
Heptachlor	4.7	6.0	78
Aldrin	3.6	4.2	87
Oxychiordane	4.2	5.6	75
trans-Chlordane	2.9	3.2	90
cis-Chlordane	4.1	3.2	127
o,p'-DDE	5.0	6.0	84
p,p'-DDE	4.8	5.8	83
trans-Nonachlor	3.5	4.4	80
cis-Nonachlor	3.2	2.6	124
o,p'-DDD	4.3	5.4	79
p,p'-DDD	6.0	7.1	84
o,p'-DDT	5.5	6.5	84
p,p'-DDT	5.7	6.4	89
Mirex	4.6	5.9	77
Heptachlor Epoxide	4.7	5.4	87
alpha-Endosulphan (l)	5.2	4.2	124
Dieldrin	5.7	6.3	90
Endrin	15	12	125
Methoxychlor	24	24	100

Surrogate Standards	% Recovery
13C-Hexachlorobenzene	52
13C-gamma HCH	55
13C-p,p'-DDE	64
13C-p,p'-DDT	63
13C-Mirex	68
13C-PCB 101	66
13C-PCB 180	71
13C-PCB 209	78
d4-alpha-Endosulphan	83

1. Concentrations are recovery corrected

Approved

CL001

9

MAXYS ANALYTICAL SERVICES LTD P.O. BOX 2219, 2045 MILLS RD., SIDNEY, B.C., CANADA V8L 358 TEL (250) 656-0881 FAX (250) 656-4511

Batch ID: CL-1380		Date: 22 June 1998
Analysis Type:	Pesticide/PCB	<i>Matrix Type:</i> Sediment
	BATCH	MAKEUP
Samples: 2607	-63 -64	Blank: CL ₋ S-BLK 1380
		Reference or Spike:
		CL-S-SPM 1017
		Duplicate:
Comments		

Copyright Axys Analytical Services Ltd. February 1993

ļ

}

1

۱

Ì

Section 4

Environmental Technology Centre (ETC) (Environment Canada) Report to Hatfield Consultants Ltd. February 1998

> Analytical Data on 1997 Viet Nam Samples

DIOXIN/FURAN ANALYTICAL REPORT

CLIENT: HATFIELD CSLT PROJECT: CIDA 770,VIETNAM SAMPLE MATRIX: Soil 4.36g SAMPLE ID: CD97-O-00887 FIELD ID: 97VN001

GC/MS: 60M DB5/VG70S 10000 BATCH #: UTL-076 File: 12029801.DFN Analysis Date: 30 Jan 98 **A So** Soil (0 – 10 cm) Farmer's Field

Congener	pg/g	Maximum TEQ	Homologue	pg/g	DL	NP
2378-TCDD	6.61	6.61	Total TCDD	8.26	0.41	3
12378-P5CDD*	[0.78]	[0.39]	Total P5CDD	1.56	0.69	1
123478-H6CDD*	N.D.	N.C.	Total H6CDD	8.49	0.69	3
123678-H6CDD*	N.D.	N.C.	Total H7CDD	10.92	0.69	2
123789-H6CDD*	0.83	0.08	OCDD	142.29	1.38	1
1234678-H7CDD	4.91	0.05				
OCDD	142.29	0.14	Total PCDD	171.52		
2378-TCDF	0.64	0.06				
12378-P5CDF*	N. D.	N.C.	Total TCDF	3.17	0.23	6
23478-P5CDF*	N.D.	N.C.	Total P5CDF	0.87	0.46	1
123478-H6CDF*	N.D.	N.C.	Total H6CDF	0.55	0.32	1
123678-H6CDF*	N.D.	N.C.	Total H7CDF	0.92	0.69	1
234678-H6CDF*	N.D.	N.C.	OCDF	1.61	1.38	1
123789-H6CDF*	0.55	0.06				
1234678-H7CDF	0.92	0.01	Total PCDF	7.12		
1234789-H7CDF	N.D.	N.C.				
OCDF	1.61	0.00				
TOTAL TEQ		7.01				

Surrogate	Amount Added, ng	Recovery %	
13C12-TCDD	1.00	79	
13C12-TCDF	1.00	83	
13C12-P5CDD	1.00	69	
13C12-P5CDF	1.00	76	
13C12-H6CDD	1.00	74	
13C12-H6CDF	1.00	90	
13C12-H7CDD	1.00	62	
13C12-H7CDF	1.00	75	
13C12-0CDD	2.00	49	

Note: (1) Results are corrected for surrogate recovery

(2) DL = detection limit (pg/g /analyte peak); NP=number of analyte peaks.

(3) * represents maximum possible amount as this isomer could coelute with other isomer(s).

(4) N.D.=not detected.

(5) Numbers in brackets represent values not detected due to incorrect ratio. These values are not included in Total TEQ.

(6) TEQ=Toxic Equivalents as 2,3,7,8-TCDD using International Toxic Equivalency Factors.

(7) N.C.=not calculable.

HRMS LABORATORY, AAQD, ETC

APPROVED BY:

12/02/98

DIOXIN/FURAN ANALYTICAL REPORT

CLIENT: HATFIELD CSLT PROJECT: CIDA 770, VIETNAM SAMPLE MATRIX: Soil 4.10g SAMPLE ID: CD97-O-00888 FIELD ID: 97VN013

GC/MS: 60M DB5/VG70S 10000 BATCH #: UTL-076 File: 12029802.DFN Analysis Date: 30 Jan 98 A So Soil (0 – 10 cm) Farmer's Field (Ploughed)

Congener 	pg/g	Maximum TEQ	Homologue	pg/g	DL	NP
2378-TCDD	4.20	4.20	Total TCDD	6.49	0.25	4
12378-P5CDD*	[0.73]	[0.37]	Total P5CDD	2.93	0.73	1
123478-H6CDD*	N.D.	N.C.	Total H6CDD	10.49	0.73	3
123678-H6CDD*	N.D.	N.C.	Total H7CDD	10.88	0.73	2
123789H6CDD*	1.12	0.11	OCDD	136.34	1.46	1
1234678-H7CDD	4.63	0.05				
OCDD	136.34	0.14	Total PCDD	167.13		
2378-TCDF	0.24	0.02				
12378-P5CDF*	N.D.	N.C.	Total TCDF	1.66	0.24	5
23478-P5CDF*	N.D.	N.C.	Total P5CDF	0.78	0.24	1
123478-H6CDF*	N.D.	N.C.	Total H6CDF	N.D.	0.49	0
123678-H6CDF*	N. D.	N. C.	Total H7CDF	0.78	0.49	1
234678-H6CDF*	N.D.	N.C.	OCDF	1.95	1.46	1
123789-H6CDF*	N.D.	N.C.				
1234678-H7CDF	0.78	0.01	Total PCDF	5.17		
1234789-H7CDF	N.D.	N.C.				
OCDF	1.95	0.00				
TOTAL TEQ		4.53				

Surrogate	Amount Added, ng	Recovery %	
13C12-TCDD	1.00	82	
13C12-TCDF	1.00	87	
13C12-P5CDD	1.00	68	
13C12-P5CDF	1.00	78	
13C12-H6CDD	1.00	81	
13C12-H6CDF	1.00	95	
13C12-H7CDD	1.00	58	
13C12-H7CDF	1.00	73	
13C12-0CDD	2.00	40	

Note: (1) Results are corrected for surrogate recovery

(2) DL = detection limit (pg/g /analyte peak); NP=number of analyte peaks.

(3) * represents maximum possible amount as this isomer could coelute with other isomer(s).

(4) N.D.=not detected.

(5) Numbers in brackets represent values not detected due to incorrect ratio. These values are not included in Total TEQ.

(6) TEQ=Toxic Equivalents as 2,3,7,8-TCDD using International Toxic Equivalency Factors.

(7) N.C.=not calculable.

APPROVED BY:

DIOXIN/FURAN ANALYTICAL REPORT

CLIENT: HATFIELD CSLT PROJECT: CIDA 770, VIETNAM SAMPLE MATRIX: Soil 4.74g SAMPLE ID: CD97-0-00889 FIELD ID: 97VN051

GC/MS: 60M DB5/VG70S 10000 BATCH #: UTL-076 File: 12029803.DFN Analysis Date: 30 Jan 98

A So Soil (0 – 10 cm)

12/02/98

Abandoned Airbase

Congener	pg/g	Maximum TEQ	Homo logue	pg/g	DL	NP
2378-TCDD	897.85	897.85	Total TCDD	897.85	0.34	1
12378-P5CDD*	1.69	0.85	Total P5CDD	7.76	0.42	2
123478-H6CDD*	N.D.	N.C.	Total H6CDD	24.35	0.63	4
123678-H6CDD*	1.14	0.11	Total H7CDD	68.44	0.84	2
123789-H6CDD*	1.65	0.17	OCDD	563.84	1.27	1
1234678-H7CDD	32.03	0.32				
OCDD	563.84	0.56	Total PCDD	1562.24		
2378-TCDF	10,46	1.05				
12378-P5CDF*	N.D.	N.C.	Total TCDF	30.30	0.21	12
23478-P5CDF*	N.D.	N.C.	Total P5CDF	23.59	0.63	3
123478-H6CDF*	1.27	0.13	Total H6CDF	8.19	0.42	6
123678-H6CDF*	0.42	0.04	Total H7CDF	19.83	0.63	3
234678-H6CDF*	0.51	0.05	OCDF	16.50	1.27	1
123789-H6CDF*	N.D.	N.C.				
1234678-H7CDF	6.96	0.07	Total PCDF	98.41		
1234789-H7CDF	0.63	0.01				
OCDF	16.50	0.02				
TOTAL TEQ		901.22				

Surrogate	Amount Added, ng	Recovery %	
13C12-TCDD	1.00	86	
13C12-TCDF	1.00	85	
13C12-P5CDD	1.00	69	
13C12-P5CDF	1.00	76	
13C12-H6CDD	1.00	84	
13C12-H6CDF	1.00	98	
13C12-H7CDD	1.00	59	
13C12-H7CDF	1.00	71	
13C12-0CDD	2.00	43	

Note: (1) Results are corrected for surrogate recovery

(2) DL = detection limit (pg/g /analyte peak); NP=number of analyte peaks.

(3) * represents maximum possible amount as this isomer could coelute with other isomer(s).

(4) N.D.=not detected.

(5) Numbers in brackets represent values not detected due to incorrect ratio. These values are not included in Total TEQ.

(6) TEQ=Toxic Equivalents as 2,3,7,8-TCDD using International Toxic Equivalency Factors.

(7) N.C.=not calculable.

APPROVED BY:

12/02/98

DIOXIN/FURAN ANALYTICAL REPORT

CLIENT: HATFIELD CSLT PROJECT: CIDA 770,VIETNAM SAMPLE MATRIX: Soil 4.81g SAMPLE ID: CD97-0-00890 FIELD ID: 97VN057

GC/MS: 60M DB5/VG70S 10000 BATCH #: UTL-076 File: 12029804.DFN Analysis Date: 30 Jan 98 A So Soil (0 – 10 cm) Abandoned Airstrip

Congener	pg/g	Maximum TEQ	Homologue	pg/g	DL.	NP
2378-TCDD	88.32	88.32	Total TCDD	88.32	0.29	1
12378-P5CDD*	2.91	1.46	Total P5CDD	7.40	0.62	2
123478-H6CDD*	1.00	0.10	Total H6CDD	19.83	0.83	5
123678-H6CDD*	2.12	0.21	Total H7CDD	65.82	0.83	2
123789H6CDD*	2.54	0.25	OCDD	697.05	1.25	1
1234678-H7CDD	32.93	0.33				
OCDD	697.05	0.70	Total PCDD	878.42		
2378-TCDF	3.08	0.31				
12378-P5CDF*	0.46	0.02	Total TCDF	11.27	0.21	10
23478-P5CDF*	0.29	0.15	Total P5CDF	6.94	0.29	5
123478-H6CDF*	1.50	0.15	Total H6CDF	8.94	0.46	7
123678H6CDF*	0.54	0.05	Total H7CDF	22.37	0.71	2
234678-H6CDF*	0.62	0.06	OCDF	30.31	1.25	1
123789H6CDF*	N.D.	N.C.				
1234678-H7CDF	6.90	0.07	Total PCDF	79.83		
1234789-H7CDF	N. D.	N.C.				
COF	30.31	0.03				
TOTAL TEQ		92.21				

Surrogate	Amount Added, ng	Recovery %	
13C12-TCDD	1.00	73	
13C12-TCDF	1.00	74	
13C12-P5CDD	1.00	62	
13C12-P5CDF	1.00	66	
13C12-H6CDD	1.00	68	
13C12-H6CDF	1.00	80	
13C12-H7CDD	1.00	49	
13C12-H7CDF	1.00	61	
13C12-0CDD	2.00	40	

Note: (1) Results are corrected for surrogate recovery

(2) DL = detection limit (pg/g /analyte peak); NP=number of analyte peaks.

(3) * represents maximum possible amount as this isomer could coelute with other isomer(s).

(4) N.D.=not detected.

(5) Numbers in brackets represent values not detected due to incorrect ratio.

These values are not included in Total TEQ.

(6) TEQ=Toxic Equivalents as 2,3,7,8-TCDD using International Toxic Equivalency Factors.

(7) N.C.=not calculable.

CLIENT: HATFIELD CSLT PROJECT: CIDA 770,VIETNAM SAMPLE MATRIX: Sediment 4.10g SAMPLE ID: CD97-0-00891 FIELD ID: 97VN073

GC/MS: 60M DB5/VG70S 10000 BATCH #: UTL-076 File: 12029805.DFN Analysis Date: 30 Jan 98

12/02/98

Rang Rang Fish Pond Sediment Near Ba Hao Reservoir

Congener	pg/g	Maximum TEQ	Homologue	pg/g	DL	NP
2378-TCDD	7,80	7.80	Total TCDD	9.71	0.49	2
12378-P5CDD*	N.D.	N.C.	Total P5CDD	N.D.	0.49	0
123478-H6CDD*	N.D.	N.C.	Total H6CDD	N.D.	0.73	0
123678-H6CDD*	N.D.	N.C.	Total H7CDD	5.85	0.98	2
123789-H6CDD*	N.D.	N.C.	OCDD	29.51	0.98	1
1234678-H7CDD	2.98	0.03				
OCDD	29.51	0.03	Total PCDD	45.07		
2378-TCDF	0.59	0.06	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
12378-P5CDF*	N.D.	N.C.	Total TCDF	0,88	0.24	2
23478-P5CDF*	N. D.	N.C.	Total P5CDF	1.07	0.24	1
123478-H6CDF*	N.D.	N.C.	Total H6CDF	N.D.	0.49	0
123678-H6CDF*	N. D.	N.C.	Total H7CDF	1.32	0.49	2
234678-H6CDF*	N.D.	N.C.	OCDF	1.41	1.41	1
123789-H6CDF*	N.D.	N.C.				
1234678-H7CDF	0.68	0.01	Total PCDF	4.68		
1234789-H7CDF	N. D.	N.C.	******			
OCDF	1.41	0.00				
TOTAL TEQ		7.93				

Surrogate	Amount Added, ng	Recovery %	
			a ar an an an na na na an an an an an an an
13C12-TCDD	1.00	69	
13C12-TCDF	1.00	70	
13C12-P5CDD	1.00	64	
13C12-P5CDF	1.00	65	
13C12-H6CDD	1.00	59	
13C12-H6CDF	1.00	68	
13C12-H7CDD	1.00	45	
13C12-H7CDF	1.00	56	
13C12-0CDD	2.00	35	

Note: (1) Results are corrected for surrogate recovery

(2) DL = detection limit (pg/g /analyte peak); NP=number of analyte peaks.

(3) * represents maximum possible amount as this isomer could coelute with other isomer(s).

(4) N.D.=not detected.

(5) Numbers in brackets represent values not detected due to incorrect ratio.

These values are not included in Total TEQ.

(6) TEQ=Toxic Equivalents as 2,3,7,8-TCDD using International Toxic Equivalency Factors.

(7) N.C.=not calculable.

CLIENT: HATFIELD CSLT PROJECT: CIDA 770,VIETNAM SAMPLE MATRIX: Soil 4.68g SAMPLE ID: CD97-O-00892 FIELD ID: 97VN075

GC/MS: 60M DB5/VG70S 10000 BATCH #: UTL-076 File: 12029806.DFN Analysis Date: 30 Jan 98 Rang Rang Soil (0 – 10 cm) South of Abandoned Airbase

12/02/98

Congener	pg/g	Maximum TEQ	Homologue	pg/g	DL	NP
2378-TCDD	7.86	7.86	Total TCDD	10.13	0.21	4
12378-P5CDD*	0.60	0.30	Total P5CDD	1.41	0.43	2
123478-H6CDD*	N.D.	N.C.	Total H6CDD	7.22	0.60	4
123678-H6CDD*	0.64	0.06	Total H7CDD	6.62	0.85	2
123789-H6CDD*	0.60	0.06	OCDD	16.58	0.81	1
1234678-H7CDD	3.29	0.03				
OCDD	16.58	0.02	Total PCDD	41.96		
2378-TCDF	1.03	0.10				
12378-P5CDF*	N. D.	N.C.	Total TCDF	4.02	0.21	4
23478-P5CDF*	N.D.	N.C.	Total P5CDF	1.54	0.21	1
123478-H6CDF*	N.D.	N.C.	Total H6CDF	0.51	0.26	2
123678-H6CDF*	N.D.	N.C.	Total H7CDF	N.D.	0.64	0
234678-H6CDF*	N.D.	N.C.	OCDF	0.81	0.81	1
123789-H6CDF*	N.D.	N.C.				
1234678-H7CDF	N.D.	N.C.	Total PCDF	6.88		
1234789-H7CDF	N.D.	N. C.				
OCDF	0.81	0.00			•	
TOTAL TEQ		8.44				

Surrogate	Amount Added, ng	Recovery %	
13C12-TCDD	1.00	84	
13C12-TCDF	1.00	86	
13C12-P5CDD	1.00	69	
13C12-P5CDF	1.00	74	
13C12-H6CDD	1.00	81	
13C12-H6CDF	1.00	98	
13C12-H7CDD	1.00	55	
I 3C12-H7CDF	1.00	71	
3C12-0CDD	2.00	48	

Note: (1) Results are corrected for surrogate recovery

(2) DL = detection limit (pg/g /analyte peak); NP=number of analyte peaks.

(3) * represents maximum possible amount as this isomer could coelute with other isomer(s).

(4) N.D.=not detected.

(5) Numbers in brackets represent values not detected due to incorrect ratio. These values are not included in Total TEQ.

(6) TEQ=Toxic Equivalents as 2,3,7,8-TCDD using International Toxic Equivalency Factors.

(7) N.C.=not calculable.

CLIENT: HATFIELD CSLT PROJECT: CIDA 770,VIETNAM SAMPLE MATRIX: Soil 4.43g SAMPLE ID: CD97-O-00893 FIELD ID: 97VN077

GC/MS: 60M DB5/VG70S 10000 BATCH #: UTL-076 File: 12029807.DFN Analysis Date: 30 Jan 98 12/02/98 Rang Rang

Soil (0 – 10 cm) North of Abandoned Airbase

Congener	pg/g	Maximum TEQ	Homologue	pg/g	DL	NP
2378-TCDD	19.10	19.10	Total TCDD	24.88	0.23	3
12378-P5CDD*	1.76	0.88	Total P5CDD	8.94	0.32	2
123478-H6CDD*	N. D.	N.C.	Total H6CDD	26.37	0.90	2
123678-H6CDD*	N.D.	N.C.	Total H7CDD	7.54	0.68	2
123789-H6CDD*	N.D.	N.C.	OCDD	26.86	1.13	1
1234678-H7CDD	4.38	0.04				
OCDD	26.86	0.03	Total PCDD	94.59		
2378-TCDF	2.48	0.25				
12378-P5CDF*	0.32	0.02	Total TCDF	8.98	0.23	8
23478-P5CDF*	N.D.	N.C.	Total P5CDF	5.42	0.23	2
123478-H6CDF*	N.D.	N.C.	Total H6CDF	1.13	0.32	2
123678-H6CDF*	N.D.	N.C.	Total H7CDF	1.44	0.45	2
234678-H6CDF*	N.D.	N.C.	OCDF	1.40	1.13	1
123789-H6CDF*	N.D.	N.C.				
1234678-H7CDF	0.95	0.01	Total PCDF	18.37		
1234789-H7CDF	N.D.	N.C.				
OCDF	1.40	0.00				
TOTAL TEQ		20.33				

Surrogate	Amount Added, ng	Recovery %	
13C12-TCDD	1.00	84	
13C12-TCDF	1.00	86	
13C12-P5CDD	1.00	76	
13C12-P5CDF	1.00	78	
13C12-H6CDD	1.00	67	
13C12-H6CDF	1.00	82	
13C12-H7CDD	1.00	54	
13C12-H7CDF	1.00	69	
13C12-0CDD	2.00	44	

Note: (1) Results are corrected for surrogate recovery

(2) DL = detection limit (pg/g /analyte peak); NP=number of analyte peaks.

(3) * represents maximum possible amount as this isomer could coelute with other isomer(s).

(4) N.D.=not detected.

(5) Numbers in brackets represent values not detected due to incorrect ratio. These values are not included in Total TEQ.

(6) TEQ=Toxic Equivalents as 2,3,7,8-TCDD using International Toxic Equivalency Factors.

(7) N.C.=not calculable.

CLIENT: HATFIELD CSLT PROJECT: CIDA 770,VIETNAM SAMPLE MATRIX: Soil 5.05g SAMPLE ID: CD97-0-00894 FIELD ID: 97VN079

GC/MS: 60M DB5/VG70S 10000 BATCH #: UTL-076 File: 12029808.DFN Analysis Date: 30 Jan 98 Rang Rang Soil (0 – 10 cm) Abandoned Airbase

12/02/98

Congener	pg/g	Maximum TEQ	Homologue	pg/g	DL.	NP
2378-TCDD	1.82	1.82	Total TCDD	2.46	0.20	2
12378-P5CDD*	0.51	0.26	Total P5CDD	3.76	0.40	3
123478-H6CDD*	N.D.	N.C.	Total H6CDD	7.60	0.59	4
123678-H6CDD*	0.99	0.10	Total H7CDD	9.58	0.40	2
123789-H6CDD*	0.55	0.06	OCDD	24.91	0.79	1
1234678-H7CDD	4.91	0.05				
OCDD	24.91	0.02	Total PCDD	48.31	`	
2378-TCDF	0.59	0.06				
12378-P5CDF*	N. D.	N.C.	Total TCDF	1.15	0.20	3
23478-P5CDF*	N.D.	N.C.	Total P5CDF	0.71	0.20	1
123478-H6CDF*	N.D.	N.C.	Total H6CDF	N. D.	0.24	0
123678-H6CDF*	N.D.	N.C.	Total H7CDF	1.07	0.40	2
234678H6CDF*	N.D.	N.C.	OCDF	N. D.	0.59	0
123789H6CDF*	N.D.	N.C.				
1234678-H7CDF	0.44	0.00	Total PCDF	2.93		
1234789-H7CDF	N.D.	N.C.				
OCDF	N.D.	N.C.				
TOTAL TEQ		2.37				

Surrogate	Amount Added, ng	Recovery %	
13C12-TCDD	1.00	83	
13C12-TCDF	1.00	88	
13C12-P5CDD	1.00	71	
13C12-P5CDF	1.00	77	
13C12-H6CDD	1.00	80	
13C12-H6CDF	1.00	97	
13C12-H7CDD	1.00	56	
13C12-H7CDF	1.00	70	
13C12-0CDD	2.00	48	

Note: (1) Results are corrected for surrogate recovery

(2) DL = detection limit (pg/g /analyte peak); NP=number of analyte peaks.

(3) * represents maximum possible amount as this isomer could coelute with other isomer(s).

(4) N.D.=not detected.

(5) Numbers in brackets represent values not detected due to incorrect ratio.

These values are not included in Total TEQ.

(6) TEQ=Toxic Equivalents as 2,3,7,8-TCDD using International Toxic Equivalency Factors.

(7) N.C.=not calculable.

12/02/98

DIOXIN/FURAN ANALYTICAL REPORT

CLIENT: HATFIELD CSLT PROJECT: CIDA 770,VIETNAM SAMPLE MATRIX: Sediment 3.77g SAMPLE ID: CD97-0-00895 FIELD ID: 97VN089

GC/MS: 60M DB5/VG70S 10000 BATCH #: UTL-076 File: 12029812.DFN

Analysis Date: 30 Jan 98

Rang Rang Ba Hao Reservoir Sediment

Congener	pg/g	Maximum TEQ	Homologue	pg/g	DL	NP
2378-TCDD	2.28	2.28	Total TCDD	3.34	0.27	2
12378-P5CDD*	[0.80]	[0.40]	Total P5CDD	N.D.	0.37	0
123478-H6CDD*	N. D.	N.C.	Total H6CDD	7.59	0.64	4
123678-H6CDD*	1.06	0.11	Total H7CDD	10.40	0.69	2
123789-H6CDD*	1.49	0.15	OCDD	18.46	0.53	1
1234678-H7CDD	5.78	0.06				
OCDD	18.46	0.02	Total PCDD	39.79		
2378-TCDF	0.27	0.03				
12378-P5CDF*	N.D.	N.C.	Total TCDF	2.12	0.27	4
23478-P5CDF*	N.D.	N.C.	Total P5CDF	N. D.	0.27	0
123478-H6CDF*	N.D.	N.C.	Total H6CDF	N.D.	0.27	0
123678-H6CDF*	N.D.	N.C.	Total H7CDF	1.01	0.53	2
234678-H6CDF*	N.D.	N.C.	OCDF	0.69	0.53	1
123789-H6CDF*	N.D.	N.C.				
1234678-H7CDF	0.58	0.01	Total PCDF	3.82		
1234789-H7CDF	N.D.	N.C.				
OCDF	0.69	0.00				
TOTAL TEQ		2.64				

Surrogate	Amount Added, ng	Recovery %	
13C12-TCDD	1.00	77	
13C12-TCDF	1.00	82	
13C12-P5CDD	1.00	76	
13C12P5CDF	1.00	78	
13C12-H6CDD	1.00	62	
13C12-H6CDF	1.00	73	
13C12-H7CDD	1.00	52	
13C12-H7CDF	1.00	64	
13C12-0CDD	2.00	45	

Note: (1) Results are corrected for surrogate recovery

(2) DL = detection limit (pg/g /analyte peak); NP=number of analyte peaks.

(3) * represents maximum possible amount as this isomer could coelute with other isomer(s).

(4) N.D.=not detected.

(5) Numbers in brackets represent values not detected due to incorrect ratio. These values are not included in Total TEQ.

(6) TEQ=Toxic Equivalents as 2,3,7,8-TCDD using International Toxic Equivalency Factors.

(7) N.C.=not calculable.

APPROVED BY:

12/02/98

DIOXIN/FURAN ANALYTICAL REPORT

CLIENT: HATFIELD CSLT PROJECT: CIDA 770,VIETNAM SAMPLE MATRIX: Method Blank SAMPLE ID: CD97-0-00897 FIELD ID: B 26/01/1998

GC/MS: 60M DB5/VG70S 10000 BATCH #: UTL-076 File: 12029810.DFN Analysis Date: 30 Jan 98

Congener	pg	Maximum TEQ	Homologue	Pg	DL.	NP
2378-TCDD	N.D.	N. C.	Total TCDD	N.D.	2.00	0
12378-P5CDD*	N. D.	N.C.	Total P5CDD	N.D.	2.00	0
123478-H6CDD*	N.D.	N.C.	Total H6CDD	N.D.	2.00	0
123678-H6CDD*	N.D.	N.C.	Total H7CDD	N.D.	3.00	0
123789-H6CDD*	N.D.	N.C.	OCDD	6.20	5.00	1
1234678-H7CDD	N. D.	N.C.				
OCDD	6.20	0.01	Total PCDD	6.20		
2378-TCDF	N. D.	N.C.				
12378P5CDF*	N.D.	N.C.	Total TCDF	N.D.	1.00	0
23478-P5CDF*	N.D.	N. C.	Total P5CDF	• N. D.	1.00	0
123478-H6CDF*	N.D.	N.C.	Total H6CDF	N.D.	1.00	0
123678-H6CDF*	N. D.	N.C.	Total H7CDF	N.D.	3.00	0
234678-H6CDF*	N.D.	N.C.	OCDF	N.D.	5.00	0
123789-H6CDF*	N.D.	N.C.				
1234678-H7CDF	N. D.	N. C.	Total PCDF	0.00		
1234789-H7CDF	N.D.	N.C.				
OCDF	N.D.	N.C.				
TOTAL TEQ		0.01				

Surrogate	Amount Added, ng	Recovery %	

13C12-TCDD	1.00	80	
13C12-TCDF	1.00	85	
13C12-P5CDD	1.00	73	
13C12-P5CDF	1.00	80	
13C12-H6CDD	1.00	73	
13C12-H6CDF	1.00	86	
13C12-H7CDD	1.00	63	
13C12-H7CDF	1.00	83	
13C12-0CDD	2.00	45	

Note: (1) Results are corrected for surrogate recovery

(2) DL = detection limit (pg /analyte peak); NP=number of analyte peaks.

(3) * represents maximum possible amount as this isomer could coelute with other isomer(s).

(4) N.D.=not detected.

(5) Numbers in brackets represent values not detected due to incorrect ratio.

These values are not included in Total TEQ.

(6) TEQ=Toxic Equivalents as 2,3,7,8-TCDD using International Toxic Equivalency Factors.

(7) N.C.=not calculable.

HRMS LABORATORY, AAQD, ETC

 \cdot

DIOXIN/FURAN ANALYTICAL REPORT

CLIENT: PROJECT: CIDA 770,VIETNAM SAMPLE MATRIX: Method Blank SAMPLE ID: CD97-0-00898 FIELD ID: B27/01/1998 (HL)

GC/MS: 60M DB5/VG70S 10000 BATCH #: UTL-076 File: 12029811.DFN Analysis Date: 30 Jan 98

Congener	Pg	Maximum TEQ	Homologue	pg	DL	NP
2378-TCDD	N. D.	N.C.	Total TCDD	N.D.	2.00	0
12378-P5CDD*	N.D.	N.C.	Total P5CDD	N. D.	2.00	0
123478-H6CDD*	N.D.	N.C.	Total H6CDD	N.D.	2.00	0
123678-H6CDD*	N.D.	N.C.	Total H7CDD	N. D.	3.00	0
123789-H6CDD*	N.D.	N.C.	OCDD	8.40	5.00	1
1234678-H7CDD	N.D.	N.C.				
OCDD	8.40	0.01	Total PCDD	8.40		
2378-TCDF	N.D.	N.C.				
12378-P5CDF*	N.D.	N.C.	Total TCDF	N. D.	1.00	0
23478-P5CDF*	N.D.	N.C.	Total P5CDF	N. D.	1.00	0
123478-H6CDF*	N.D.	N.C.	Total H6CDF	N.D.	1.00	0
123678-H6CDF*	N.D.	N.C.	Total H7CDF	N.D.	2.00	0
234678-H6CDF*	N.D.	N.C.	OCDF	N.D.	4.00	0
123789-H6CDF*	N.D.	N.C.				,
1234678-H7CDF	N.D.	N.C.	Total PCDF	0.00		
1234789-H7CDF	N.D.	N.C.	*************			
OCDF	N.D.	N.C.				
TOTAL TEQ		0.01				

Surrogate	Amount Added, ng	Recovery %	
13C12-TCDD	1.00	75	
13C12-TCDF	1.00	76	
13C12-P5CDD	1.00	86	
13C12-P5CDF	1.00	79	
13C12-H6CDD	1.00	82	
13C12-H6CDF	1.00	90	
13C12-H7CDD	1.00	60	
13C12-H7CDF	1.00	73	
13C12-0CDD	2.00	41	

Note: (1) Results are corrected for surrogate recovery

(2) DL = detection limit (pg /analyte peak); NP=number of analyte peaks.

(3) * represents maximum possible amount as this isomer could coelute with other isomer(s).

(4) N.D.=not detected.

(5) Numbers in brackets represent values not detected due to incorrect ratio. These values are not included in Total TEQ.

(6) TEQ=Toxic Equivalents as 2,3,7,8-TCDD using International Toxic Equivalency Factors.

(7) N.C.=not calculable.

Section 5

Tabulation of Dioxin Analyses Summarized from Specific Reference Materials (Provided Courtesy of Axys Analytical Services, Sydney, British Columbia, Canada)

Exposed participants

	Pulp Mill Workers	N. Quebec	S. Quebec	Trichloro- phenol Production	Trichloro- phenol Accident	Pentachloro- phenol Production	Metal Reclamation Plant Workers	Herbicide Plant Workers	Michigan Vietnam Vets	Pyrolysis Plant Residents	Incinerator Plant Residents (male)
	46 <n>28</n>	20 Pools (9-55)	3 Pools (5)	N = 12	N = 17	N = 20	N = 32	N = 85	N = 50	N = 12	N = 19
Dioxin			,			· · · · · · · · · · · · · · · · · · ·					
2378-TCDD	1.9	8.4	<2	331.8	53	4.5	5.2	125.6	3.8	4.4	1.3
12378-PnCDD	5.5	16.2	3.4	10.7	23.9	28.3	19.2	56.3	9.3	12.5	5.1
123478-HxCDD ¹	6.5	1	1	5.7	14.9	47.9	17.3	69.9	9.8	3	4.4
123678-HxCDD	73	64	32.3	26.9	51.9	240.6	49.5	351.2	72.1	59.5 ³	20.3
123789-HxCDD	8.9	20.6	5.0	5.0	10.6	110.3	15.5	70.4	11.9	3	4.2
1234678-HpCDD	83	95.6	62	44.3	82.4	2514.1	79.5	369.8	118.6	64.8	62
OCDD	610	1122	444.7	426.9	492.3	33191.5	505.9	1859.7	793.9	445.1	355
Dibenzofurans											
2378-TCDF	1.4	5.6	<3	2.5	3.5	2.6	4.2	2.1	2.3	1.8	7.3
12378-PnCDF	1.3	NR	NR	1.2	1.2	3.5	2.6	0.9	1.2	50.8 ³	1.7
23478-PnCDF	6.9	19.8	9.6	25.8	36.6	48.6	99.6	48.5	8.8	3	11.1
123478-HxCDF	6.9	14.4	13.1	8.0	14	69.1	63.8	93.1	10.6	87.9 ³	5
123678-HxCDF ²	5.1	2	2	6.6	12	63.7	70.8	61.3	6.9	3	4.7
123789-HxCDF	1.4	NR	NR	0.7	0.7	1.2	1.7	0.7	2.8	3	ND
234678-HxCDF	4.7	3.7	2.4	1.7	2.8	12.6	13	4.1	2.8	3	2.3
1234678-HpCDF	18.4	38.8	26.3	12.9	17	283.3	55.4	63.8	19.6	22.4 ³	10.4
1234789-HpCDF	3.0	NR	NR	0.9	1.0	2.8	2.4	1.7	3.1	3	<0.35
OCDF	NR	NR	NR	4.0	3.9	8.7	5.2	4.4	9.3	3.6	7
PCDD & PCDF TEQ	20	39.6	14.6	356.4	92.6	158.6	90.2	249.5	27	27	15.6
% TEQ from 2378 TCDD	9.5	21.0	14.0	93.0	57.0	2.8	5.8	50.0	14.1	16.3	8.3
Matrix	Serum	Plasma	Plasma	WB	WB	WB	WB	WB	WB	NR	WB
Reference	1	4	4	8	8	8	8	8	9 & 20	12	13

¹ Where 123478-HxCDD and 123678-HxCDD coeluted, the value was recorded as 123678-HxCDD

² Where 123478-HxCDF and 123678-HxCDF coeluted, the value was recorded as 123478-HxCDD

³ Individual values of 2378 CDD/Fcongeners were not reported; Total values are reported

x pools(y)(z) = x replicates of pooled blood from y and z donors were analysed and averaged

N = x, x samples were analysed seperately and the average reported

ND = not detected(and not included in averages), NR = Not Reported, WB = Whole Blood

Exposed participants

						ben parae	- p				
	Incinerator Plant Residents (female)	Na-PCP Sprayed areas, 15-19 yrs	Na-PCP Sprayed areas, over 40 yrs	Individuals in contact with Na-PCP	Exposed lab personnel	Municipal Incinerator US workers	Municipal Incinerator German workers	Chemical Workers (mothers)	Chemical workers children	Bleaching Plant	Paper Mill
	N = 20	N = 50	N = 50	N = 26	N = 7	Pool (56)	Pool (10)	N = 4	N = 6	N = 14	N = 20
Dioxin											
2378-TCDD	1.4	2.2	4.6	3	2	NR	NR	168	49	5.7	3.1
12378-PnCDD	5.5	5.3	9.5	7.2	5.5	7.7	11	28	23	24	20
123478-HxCDD ¹	4.7	14	27.8	22.1	2.8	3	3	1	1	3.9	3.3
123678-HxCDD	23	4.2	8.9	9	52	74.9 ³	85.9 ³	11	11	160	168
123789-HxCDD	5.6	1.7	2.3	2.9	9.3	3	3	3	4	12	15
1234678-HpCDD	77.6	15.2	15.7	24.1	149	NR	NR	11	31	107	112
OCDD	465	568	748	1148	1294	695	1051	170	279	689	625
Dibenzofurans											
2378-TCDF	8.5	2.1	1.4	1.5	0.9	8.1	2.7	1	3	3.8	2.4
12378-PnCDF	1.7	ND	ND	ND	0.41	NR	NR	NR	NR	2.1	1.8
23478-PnCDF	14.3	1.1	1.9	2.4	14.2	NR	NR	11	10	39	43
123478-HxCDF	5.9	3.1	4.9	16.4	5.6	33.6 ³	52.3 ³	13	11	14	17
123678-HxCDF ²	5.9	1.5	2.1	2.3	2	3	3	2	2	13	13
123789-HxCDF	ND	ND	ND	ND	NR	3	3	NR	NR	0.6	1.2
234678-HxCDF	2.6	1	2	1.2	ND	3	3	2	4	4.4	4.9
1234678-HpCDF	11	3.6	4.1	4.9	ND	50 ³	43.9 ³	16	33	75	61
1234789-HpCDF	<0.4	ND	ND	ND	NR	3	3	NR	NR	1.5	0.7
OCDF	7	5.9	7.5	5.2	ND	NR	NR	NR	NR	NR	NR
PCDD & PCDF TEQ	18.4	9	16.5	14.8	23	16.7	21.1	190.9	69.7	61	60
% TEQ from 2378 TCDD	7.6	24.4	27.9	20.3	8.7	NR	NR	88.0	70.3	9.3	5.2
Matrix	WB	NR	NR	NR	Plasma	WB	WB	WB	WB	Plasma	Plasma
Reference	13	14	14	14	15	16	16	17	17	18	18

¹ Where 123478-HxCDD and 123678-HxCDD coeluted, the value was recorded as 123678-HxCDD

² Where 123478-HxCDF and 123678-HxCDF coeluted, the value was recorded as 123478-HxCDD

³ Individual values of 2378 CDD/Fcongeners were not reported; Total values are reported

x pools(y)(z) = x replicates of pooled blood from y and z donors were analysed and averaged

N = x, x samples were analysed seperately and the average reported

ND = not detected(and not included in averages), NR = Not Reported, WB = Whole Blood

2 of 8

Exposed participants

	Vietnam Vets	Involved in hospital Fire Incident	Involved in relay station Fire Incident	Involved in distillation plant Fire Incident	Cornwall Fish Eater <38 yrs	Cornwall Fish Eater 38-50 yrs	Cornwall Fish Eater >50 yrs	Mississauga Fish Eater, <38 yrs	Mississauga Fish Eater, 38-50 yrs
	N = 20	N = 53	N = 25	N = 7	Pool	Pool	Pool	Pool	Pool
Dioxin									
2378-TCDD	5.7	3.6	3	2.3	2.8	5.7	5.3	5.4	7.4
12378-PnCDD	7.1	15.3	11.4	14	6.8	9.6	11.8	ND	17
123478-HxCDD ¹	1	3	3	3	1	1	1	1	1
123678-HxCDD	56	100.7 ³	49.4 ³	52.4 ³	47.2	76.5	91	56.8	80.1
123789-HxCDD	8.5	3	3	3	10.1	12.5	12.3	12	16
1234678-HpCDD	107.9	112.8	65.7	52.6	85.5	107.4	131.1	104	129
OCDD	843.1	688	469.2	396.7	367.7	593.7	575.5	422	532.2
Dibenzofurans									
2378-TCDF	1.3	NR	2.5	1.9	ND	ND	ND	ND	ND
12378-PnCDF	NR	49.6 ³	27 ³	31.9 ³	NR	NR	NR	NR	NR
23478-PnCDF	6.1	3	3	3	12.1	13	15.7	24.8	18.5
123478-HxCDF	6.9	43.8 ³	19.5 ³	23.4 ³	12.5	14.9	14.2	17.3	20
123678-HxCDF ²	5.4	3	3	3	2	2	2	2	2
123789-HxCDF	NR	3	3	3	NR	NR	NR	NR	NR
234678-HxCDF	1.2	3	3	3	6.7	4.7	3.8	14.1	9.7
1234678-HpCDF	25.1	30.7 ³	14.7 ³	15.2 ³	20.8	20.4	18	22.4	17.3
1234789-HpCDF	NR	3	3	3	NR	NR	NR	NR	NR
OCDF	ND	NR	2.1	3	NR	NR	NR	NR	NR
PCDD & PCDF TEQ	22.39	30.3	18.5	19.7	21.5	29.9	33.5	32.4	40.1
% TEQ from 2378 TCDD	25.5	11.9	16.2	11.7	13.0	19.1	15.8	16.7	18.5
Matrix	Plasma	WB	WB	WB	Plasma	Plasma	Plasma	Plasma	Plasma
Reference	21	22	22	22	23	23	23	23	23

¹ Where 123478-HxCDD and 123678-HxCDD coeluted, the value was recorded as 123678-HxCDD

² Where 123478-HxCDF and 123678-HxCDF coeluted, the value was recorded as 123478-HxCDD

³ Individual values of 2378 CDD/Fcongeners were not reported; Total values are reported

x pools(y)(z) = x replicates of pooled blood from y and z donors were analysed and averaged

N = x, x samples were analysed seperately and the average reported

ND = not detected(and not included in averages), NR = Not Reported, WB = Whole Blood

Exposed participants

	Mississauga Fish Eater, >50 yrs	phenolxyherbicide incident Male Factory Workers	phenolxyherbicide incident Female Factory Workers	Chemists	Paper & pulp plant workers	PCB exposure from fish	Worker	Office Workers (no chloracne)	Factory Worker (with chloracne)
	Pool	N = 3	N = 4	N = 3	N = 2	N = 2	81 <n<274< th=""><th>N = 2</th><th>N = 10</th></n<274<>	N = 2	N = 10
Dioxin									
2378-TCDD	4.8	163	202	8.5	8.6	13	220	23.5	118
12378-PnCDD	15.4	29	64	NR	15.1	23.2	13	17	27
123478-HxCDD ¹	1	1	1	3	16	19.5	12	1	1
123678-HxCDD	102	15	29	79.2 ³	91.1	122	90	7.7	15
123789-HxCDD	16	ND	ND	3	15.6	19.3	13	ND	ND
1234678-HpCDD	80.6	33	26	150	172	247	160	9.5	16
OCDD	574.1	113	165	985	1250	1291	1090	67	233
Dibenzofurans									
2378-TCDF	ND	ND	ND	ND	3	4	NR	ND	ND
12378-PnCDF	NR	ND	ND	NR	ND	ND	NR	NR	NR
23478-PnCDF	24.4	19	35	15	12	29.4	15	10	13
123478-HxCDF	21	21	30	22.3 ³	13	25.4	15	22	15
123678-HxCDF ²	2	2	2	3	13.1	17.3	10	2	2
123789-HxCDF	NR	NR	NR	3	ND	ND	NR	NR	NR
234678-HxCDF	7.8	ND	4.7	3	5.2	8.3	NR	ND	ND
1234678-HpCDF	17.2	18	30	26	24.3	36.2	23	10.5	20
1234789-HpCDF	NR	NR	NR	NR	7.6	7.7	NR	NR	NR
OCDF	NR	8	20	NR	23.8	23.1	NR	NR	NR
PCDD & PCDF TEQ	41.2	191.2	258.6	18.7	31.7	60	250.9	40.9	142
% TEQ from 2378 TCDD	11.7	85.3	78.1	45.5	27.1	21.7	87.7	57.5	83.1
Matrix	Plasma	WB	WB	WB	WB	WB	Serum	WB	WB
Reference	23	26	26	28	31	31	32	33	33

¹ Where 123478-HxCDD and 123678-HxCDD coeluted, the value was recorded as 123678-HxCDD

² Where 123478-HxCDF and 123678-HxCDF coeluted, the value was recorded as 123478-HxCDD

³ Individual values of 2378 CDD/Fcongeners were not reported; Total values are reported

x pools(y)(z) = x replicates of pooled blood from y and z donors were analysed and averaged

N = x, x samples were analysed seperately and the average reported

ND = not detected(and not included in averages), NR = Not Reported, WB = Whole Blood

4 of 8

Unexposed participants

	Community Residents	Canada Pool I	Canada Pool II	Baikalsk	St. Petersburg	Germany	USA	Guam	Missouri	Spain, Male 18-29yrs	Spain, Male 30-49yrs
	10 <n<17< th=""><th>Pool</th><th>Pool</th><th>Pool (8)</th><th>Pool (60)</th><th>N = 102</th><th>Pool (100)</th><th>N = 10</th><th>Pool (6)</th><th>2 Pools (20,14)</th><th>2 Pools (16,22)</th></n<17<>	Pool	Pool	Pool (8)	Pool (60)	N = 102	Pool (100)	N = 10	Pool (6)	2 Pools (20,14)	2 Pools (16,22)
Dioxin											
2378-TCDD	1.8	8.5	7	3.7	4.5	3.6	5.2	2.6	3.4	1.5	1.5
12378-PnCDD	5.6	24	13	4.7	9.3	13.8	21	14.7	7.1	3.2	4.7
123478-HxCDD ¹	6.2	1	1	4.7	2.1	10.9	13	8.3	1	3	3
123678-HxCDD	67	210	140	6.3	8.5	54.6	84	62.1	67.5	27.2 ³	38.8 ³
123789-HxCDD	6.9	39	22	2	2.4	10.6	15	15.5	13.4	3	3
1234678-HpCDD	95.2	204	187	9.6	14	92.4	187	162.9	155	46.4	62.2
OCDD	547	2070	1950	57	89	610.3	1174	748.6	1208	335.6	429
Dibenzofurans											
2378-TCDF	1.3	NR	NR	3	2.3	2.3	3.1	3.9	3.19	NR	1.1
12378-PnCDF	1.3	NR	NR	<1.8	ND	2	2.8	0.5	ND	5.2 ³	5.5 ³
23478-PnCDF	6.4	42	17	15	9.2	37	13	9.34	7	3	3
123478-HxCDF	6.4	NR	NR	13	8.1	15.4	15	6.28	9.4	9.6 ³	9.3 ³
123678-HxCDF ²	4.8	NR	NR	6.8	3.9	13.3	14	5.38	6.04	3	3
123789-HxCDF	1.6	NR	NR	ND	ND	1.7	ND	0.5	ND	3	3
234678-HxCDF	3.9	NR	NR	2.1	1.2	4.3	3.6	1.16	ND	3	3
1234678-HpCDF	15.5	83	54	4.6	6.3	23.4	36	34.1	20.2	7.9 ³	6.8 ³
1234789-HpCDF	2.7	NR	NR	ND	ND	1.5	ND	0.85	ND	3	3
OCDF	NR	NR	NR	<8	NR	4.2	4.2	6.39	ND	2.5	2.5
PCDD & PCDF TEQ	19.4	71.3	42.6	18	17	42	41	28	23.4	10	12.5
% TEQ from 2378 TCDD	9.3	11.9	16.4	20.6	26.5	8.6	12.7	9.3	14.5	15.0	12.0
Matrix	Serum	Plasma	Plasma	WB	WB	WB	Plasma	WB	NR	WB	WB
Reference	1	2	2	5	5	5	5	5	9	10	10

¹ Where 123478-HxCDD and 123678-HxCDD coeluted, the value was recorded as 123678-HxCDD

² Where 123478-HxCDF and 123678-HxCDF coeluted, the value was recorded as 123478-HxCDD

³ Individual values of 2378 CDD/Fcongeners were not reported; Total values are reported

x pools(y)(z) = x replicates of pooled blood from y and z donors were analysed and averaged

N = x, x samples were analysed seperately and the average reported

ND = not detected(and not included in averages), NR = Not Reported, WB = Whole Blood

Unexposed participants

· ·	Spain, Male 50-69yrs	Spain, Female, 18-39 yrs	Spain, Female, 40-69 yrs	Aduits from S. Germany	Urban Industrial Area, Group 1	Urban Industrial Area, Group 2	Rural Industrial Area, Group 1	Rural Industrial Area, Group 2	Rural area, group 1	Rural area, group 2	Control, 15-19 yrs	Control, >40 yrs
	2 Pools(12,15)	2 Pools (26,21)	2 Pools (28,24)	N = 15	Pool (45)	Pool (79)	Pool (39)	Pool (44)	Pool (46)	Pool (33)	Pool (50)	Pool (50)
Dioxin								· · · · ·				
2378-TCDD	1.9	0.8	2.3	2.4	1.2	1.2	1.8	1.4	1.5	1.8	<1.2	ND
12378-PnCDD	5.8	4.7	6.1	6.1	2.5	2.7	3.8	3.2	3.1	3.6	1.6	3.1
123478-HxCDD ¹	3	3	3	3	3	3	3	3	3	3	1.8	3.8
123678-HxCDD	43.3 ³	35.9 ³	51.5 ³	39.3 ³	14.3 ³	17.1 ³	18.9 ³	19 ³	17.8 ³	20.2 ³	4.3	4.9
123789-HxCDD	3	3	3	3	3	3	3	3	3	3	1.7	2.6
1234678-HpCDD	70.1	72.6	99.1	46.4	28.8	31.5	29.3	26.3	26	30.2	11.6	17.5
OCDD	452.3	516.6	688.4	416.9	255.9	237.6	219.5	180.5	197.9	247.2	104.1	117
Dibenzofurans												
2378-TCDF	1.3	1.2	1.4	1.7	<1.9	<2.2	<2.2	<1.9	<2.3	<1.9	<4.2	2.7
12378-PnCDF	6.8 ³	5 ³	8.3 ³	12.4 ³	3.9 ³	4.8 ³	5.4 ³	4.9 ³	6.3 ³	5.5 ³	<1.6	ND
23478-PnCDF	3	3	3	3	3	3	3	3	3	3	2.7	2.7
123478-HxCDF	11.2 ³	10 ³	13 ³	16.5 ³	7 ³	8 ³	9.7 ³	9.4 ³	7.7 ³	9.2 ³	3.4	4.7
123678-HxCDF ²	3	3	3	3	3	3	3	3	3	3	2.1	3
123789-HxCDF	3	3	3	3	3	3	3	3	3	3	ND	ND
234678-HxCDF	3	3	3	3	3	3	3	3	3	3	1.9	2.7
1234678-HpCDF	6.8 ³	6.2 ³	7.8 ³	13 ³	10.6 ³	11.7 ³	11.3 ³	12.3 ³	26.3 ³	13.2 ³	5.1	7.7
1234789-HpCDF	3	3	3	3	3	3	3	3	3	3	ND	<2.3
OCDF	2.5	2.5	2.2	<5.0	1.5	<4.8	<5.0	<5.0	1.2	1.8	<5.0	<5.0
PCDD & PCDF TEQ	15	11.7	17.6	18.4	7.3	8.2	10 ⁻	9	9.3	10.1	4.8	5.7
% TEQ from 2378 TCDD	12.7	6.8	13.1	13.0	16.4	14.6	18.0	15.6	16.1	17.8	25.0	0.0
Matrix	WB	WB	WB	NR	NR	NR	NR	NR	NR	NR	NR	NR
Reference	10	10	10	11	11	11	11	11	11	11	14	14

¹ Where 123478-HxCDD and 123678-HxCDD coeluted, the value was recorded as 123678-HxCDD

² Where 123478-HxCDF and 123678-HxCDF coeluted, the value was recorded as 123478-HxCDD

³ Individual values of 2378 CDD/Fcongeners were not reported; Total values are reported

x pools(y)(z) = x replicates of pooled blood from y and z donors were analysed and averaged

N = x, x samples were analysed seperately and the average reported

ND = not detected(and not included in averages), NR = Not Reported, WB = Whole Blood

6 of 8

Unexposed participants

	control	US controis	German controls	Control pool	Controls	Vegetarians	Non- vegetarians	Reference blood	Cornwall Fish Eater <38 yrs	Cornwall Fish Eater 38-50 yrs	Cornwall Fish Eater >50 yrs
	N = 3	Pool (14)	Pool (25)	Pool (100)	N = 14	- N < 25	N < 25	N = 10	Pool	Pool	Pool
Dioxin			· · · · · · · · · · · · · · · · · · ·								
2378-TCDD	0.9	NR	NR	12	4.1	3.39	3.58	4	3	4.6	5.9
12378-PnCDD	5.1	5.2	14.1	9.5	17	14.1	15.5	16.5	8.7	6.8	15.1
123478-HxCDD ¹	2.5	3	3	1	4	12.3	14.7	3	1	1	1
123678-HxCDD	43	65.1 ³	93.7 ³	6	150	36	39.9	75.7 ³	55.5	88.1	85.5
123789-HxCDD	7.6	3	3	ND	12	6.84	8.33	3	14.5	11.3	9.3
1234678-HpCDD	147	NR	NR	9.7	132	70.2	80	88.2	98.4	127.2	126.7
OCDD	1227	531	601	73	804	447	456	610.8	417.2	673.1	709.8
Dibenzofurans											
2378-TCDF	1	3.5	3.3	ND	1.9	0.94	1.25	NR	ND	ND	ND
12378-PnCDF	0.6	NR	NR	NR	1.2	0.64	0.66	46.3 ³	NR	NR	NR
23478-PnCDF	14	NR	NR	8	29	25.8	25.5	3	13	14.9	17.3
123478-HxCDF	5.1	20.3 ³	30.2 ³	7	10	8.09	9.05	32.1 ³	13.7	16.9	19.8
123678-HxCDF ²	NR	3	3	2	9.5	11.8	12.9	3	2	2	2
123789-HxCDF	NR	3	3	NR	1.6	NR	NR	3	NR	NR	NR
234678-HxCDF	ND	3	3	ND	4.8	3.16	3.16	3	6.2	4.6	6.5
1234678-HpCDF	ND	18 ³	22.9 ³	8.4	64	14.2	14.6	24.1 ³	19.2	14.2	19.4
1234789-HpCDF	NR	3	3	NR	ND	0.4	0.58	3	NR	NR	NR
OCDF	ND	NR	NR	NR	NR	2.02	1.36	NR	NR	NR	NR
PCDD & PCDF TEQ	19.1	3.5	8	22.3	49	32.6	34.32	12.9	24.7	29.8	36.8
% TEQ from 2378 TCDD	4.7	NR	NR	53.8	8.4	10.4	10.4	31.0	12.1	15.4	16.0
Matrix	Plasma	WB	WB	WB	Plasma	WB	WB	WB	Plasma	Plasma	Plasma
Reference	15	16	16	17	18	19	19	22	23	23	23

¹ Where 123478-HxCDD and 123678-HxCDD coeluted, the value was recorded as 123678-HxCDD

² Where 123478-HxCDF and 123678-HxCDF coeluted, the value was recorded as 123478-HxCDD

³ Individual values of 2378 CDD/Fcongeners were not reported; Total values are reported

x pools(y)(z) = x replicates of pooled blood from y and z donors were analysed and averaged

N = x, x samples were analysed seperately and the average reported

ND = not detected(and not included in averages), NR = Not Reported, WB = Whole Blood

Unexposed participants

	Mississauga Fish Eater, <38 yrs	Mississauga Fish Eater, 38-50 yrs	Mississauga Fish Eater, >50 yrs	Adults from Madrid	Adults from Germany	General Russian Population	German controls	Referent	General Ufa Population	Factory Worker Offspring (no chloracne)
	Pool	Pool	Pool	N = 11	N = 134	Pool (68)	N = 85	29 <n<80< th=""><th>Pool (100)</th><th>N = 8</th></n<80<>	Pool (100)	N = 8
Dioxin	- <u> </u>			· · · · · · · · · · · · · · · · · · ·						
2378-TCDD	2.8	3.6	ND	1.52	2.9	4.4	3.6	7	12	40
12378-PnCDD	ND	11	11	4.09	6.3	8.8	NR	12	9.5	20
123478-HxCDD ¹	1	1	1	2.75	6.9	1	3	13	1	1
123678-HxCDD	44.5	68.1	99	32.63	26.7	10.6	81.1 ³	84	6	11
123789-HxCDD	11	11	16	5.81	4.9	2.3	3	13	ND	ND
1234678-HpCDD	114	81	115	71.46	45.3	13.5	93.8	160	9.7	30
OCDD	530.8	545.7	586.3	397.03	370	85.2	596	1010	73	217
Dibenzofurans										
2378-TCDF	ND	ND	ND	4.66	1.9	2.3	2.5	NR	ND	ND
12378-PnCDF	NR	NR	NR	1.44	0.5	ND	NR	NR	NR	NR
23478-PnCDF	15.9	17.4	21	6.98	12.8	9.9	36.8	11	8	10
123478-HxCDF	57.7	13.7	23	5.8	7.9	13	31.6 ³	11	7	13
123678-HxCDF ²	2	2	2	5.06	5.8	2	3	8.5	2	2
123789-HxCDF	NR	NR	NR	1.83	ND	NR	3	NR	NR	NR
234678-HxCDF	66	ND	8.2	2.6	2.6	1.3	3	-	ND	ND
1234678-HpCDF	81.3	15.8	18	12.79	11.4	6.1	21.8	20	8.4	31
1234789-HpCDF	NR	NR	NR	5	0.6	NR	NR	NR	NR	NR
OCDF	NR	NR	NR	20.57	2.6	ND	5.5	NR	NR	NR
PCDD & PCDF TEQ	34	29.1	34.3	14.3	19.1	17	42	34.3	22.7	58.6
% TEQ from 2378 TCDD	8.2	12.4	0.0	10.6	15.2	25.9	8.6	20.4	52.9	68.3
Matrix	Plasma	Plasma	Plasma	Serum	WB	WB	WB	Serum	WB	WB
Reference	23	23	23	24	25	26,33	28	32	33	33

¹ Where 123478-HxCDD and 123678-HxCDD coeluted, the value was recorded as 123678-HxCDD

² Where 123478-HxCDF and 123678-HxCDF coeluted, the value was recorded as 123478-HxCDD

³ Individual values of 2378 CDD/Fcongeners were not reported; Total values are reported

x pools(y)(z) = x replicates of pooled blood from y and z donors were analysed and averaged

N = x, x samples were analysed seperately and the average reported

ND = not detected(and not included in averages), NR = Not Reported, WB = Whole Blood

8 of 8

List of References

- 1. Tepper, Allison, Susan Burt, Laurie Piacitelli, and Donald G. Patterson, Jr. (1997) Serum levels of polychlorinated dibenzo-*p*-dioxins and dibenzofurans in pulp and paper mill workers. *Chemosphere*, Vol. 34, Nos. 5-7, pp. 1587-1603.
- 2. Ryan, John J., and Pat Mills (1997) Lipid extraction from blood and biological samples and concentrations of dioxin-like compounds. *Chemosphere*, Vol. 34, Nos. 5-7, pp. 999-1009.
- Schecter, Arnold, Olaf Papke, Michael Ball, Hoang Dinh Cau, Le Cao Dai, Nguyen Quang Ming, Hoang Trong Qyunh, Nguyen Ngoc Thi Phuong, Pham Hoang Pheit, Huynh Kim Chi, Dieu Thieu Vo, John D. Constable, and James Spencer (1992) Dioxin and dibenzofuran levels in blood and adipose tissue of Vietnamese from various locations in Vietnam in proximity to Agent Orange spraying. *Chemosphere*, Vol. 25, Nos. 7-10, pp. 1123-1128.
- Ayotte, P., E. Dewailly, J.J. Ryan, S. Bruneau, and G. Lebel. (1997) PCBs and dioxin-like compounds in plasma of adult Inuit living in Nunavik (Arctic Quebec). *Chemosphere*, Vol. 34, Nos. 5-7, pp. 1459-1468.
- Schecter, Arnold, Olaf Papke, Michael Ball, Michael Grachev, Albert Beim, Valentin Koptug, Hoang Dinh Cau, Le Cao Dai, Hoang Tri Quynh, Nguyen Ngoc Thi Phuong, and Huynh Kim Chi (1992) Dioxin and dibenzofuran levels in human blood samples from Guam, Russia, Germany, Vietnam and the USA. *Chemosphere*, Vol. 25, Nos. 7-10, pp. 1129-1134.
- Kang, Daehee, Allison Tepper, and Donald G. Patterson, Jr. (1997) Coplanar PCBs and the relative contribution of coplanar PCBs, PCDDs, and PCDFs to the total 2,3,7,8-TCDD toxicity equivalents in human serum. *Chemosphere*, Vol. 35, No. 3, pp. 503-511.
- Masuda, Y., and A. Schecter (1992) Exposed and control human blood levels from Guam and Binghamton workers and Yusho patients. *Chemosphere*, Vol. 25, Nos. 7-10, pp. 1091-1094.
- Papke,O., M. Ball, and A. Lis (1992) Various PCDD/PCDF patterns in human blood resulting from different occupational exposures. *Chemosphere*, Vol. 25, Nos. 7-10, pp. 1101-1108.
- 9. Schecter, A. (1994) "Table 15: Mean Level of PCDDs, PCDFs, and PCBs in Individual Analyses from Michigan and Pooled Blood from Missouri (ppt, lipid)". In: *Dioxins and Health*, Arnold Schecter (ed.), Plenum Press, New York, 1994. Page 476.
- 10. Gonzalez, C.A., M. Kogevinas, A. Huici, E. Gadea, M. Ladona, A. Bosch, and M.J. Bleda (1998) Blood levels of polychlorinated dibenzodioxins, polychlorinated dibenzofurans and polychlorinated biphenyls in the general population of a Spanish Mediterranean city. *Chemosphere*, Vol. 36, No. 3, pp. 419-426.
- 11. Wuthe, J., I.. Piechotowski, O.. Papke, B.. Zier, T.. Gabrio, D.. Kramer, B.. Kouros, M.. Schwenk, and G. Pfaff (1996) First data on background levels of non-ortho and mono-

ortho PCBs in blood of residents from Southern Germany. *Chemosphere*, Vol. 32, Nos. 3, pp. 567-574.

- 12. Wuthe, J., H. Hagenmaier, O. Papke, C. Kettmann, R. Frommberger, and W. Lillich (1992) Dioxin and furan (PCDD/PCDF) levels in human blood and human milk of people living in a PCDD/PCDF contaminated area. *Chemosphere*, Vol. 25, Nos. 7-10, pp. 1135-1140.
- Demi, E., I. Mangelsdorf, and H. Greim (1996) Chlorinated dibenzodioxins and dibenzofurans (PCDD/F) in blood and human milk of non occupationally exposed persons living in the vicinity of a municipal waste incinerator. *Chemosphere*, Vol. 33, No. 10, pp. 1941-1950.
- 14. Schecter, A. (1994) "Table 9: PCDD/PCDF in Human Milk and Blood from China from Pentachlorophenol (Na-PCP)-Sprayed Areas Compared with Controls". In: *Dioxins and Health*, Arnold Schecter (ed.), Plenum Press, New York, 1994, pp. 468-469.
- 15. Hesso, A., M. Hameila, and J. Tornaeus (1992) Polychlorinated dioxins, furans and nonortho polychlorinated biphenyls in blood of exposed laboratory personnel. *Chemosphere*, Vol. 25, Nos. 7-10, pp. 1053-1059.
- 16. Schecter, A. (1994) "Table 6: Selected Congeners and Total PCDD and PCDF Levels in Pooled Blood of Municipal Incinerator Workers and Matched Controls (ppt, lipid)". In: *Dioxins and Health*, Arnold Schecter (ed.), Plenum Press, New York, 1994. Page 463.
- 17. Schecter, A. (1994) "Table 8: PCDD/PCDF Levels for Ufa Russia Chemical Workers, Their Children, and the General Population (whole blood)". In: *Dioxins and Health*, Arnold Schecter (ed.), Plenum Press, New York, 1994. Page 466.
- Rosenberg, C., H. Kontsas, J. Tornaeus, P. Mutanen, P. Jappinen, H. Vainio, D.G. Patterson, Jr., and L.L. Needham (1995) PCDD/PCDF levels in the blood of workers at a pulp and paper mill. *Chemosphere*, Vol. 31, No. 8, pp. 3933-3944.
- Welge, P., J. Wittsiepe, P. Schrey, U. Ewers, M. Exner, and F. Selenka (1993) PCDD/Flevels in human blood of vegetarians compared to those of non-vegetarians. *DIOXIN '93:* 13th International symposium on chlorinated dioxins and related compounds, Vienna. Organohalogen compounds, Vol. 13, pp 13-17.
- Schecter, A., H. McGee, J. Stanley, and K. Boggess (1993) Chlorinated dioxin, dibenzofuran, coplanar, mono-ortho, and di-ortho substituted PCB congener levels in blood and semen of Michigan Vietnam veterans compared with levels in Vietnamese exposed to Agent Orange. *Chemosphere*, Vol. 27, Nos. 1-3, pp. 241-252.
- Schecter, A., J.J. Ryan, J.D. Constable, R. Baughman, J. Bangert, P. Furst, K. Wilmers, and Richard P. Oates (1990) Partitioning of 2,3,7,8-chlorinated dibenzo-p-dioxins and dibenzofurans between adipose tissue and plasma lipid of 20 Massachusetts Vietnam veterans. *Chemosphere*, Vol. 20, Nos. 7-9, pp. 951-958.
- Papke, O., M. Ball, Z.A. Lis, and K. Scheunert (1990) Determination of PCDD/PCDF in whole blood from persons involved in fire incidents. *Chemosphere*, Vol. 20, Nos. 7-9, pp. 959-966.

- 23. Cole, Donald C., Jill Kearney, John J. Ryan, and Andrew P. Gilman (1997) Plasma levels and profiles of dioxin and dioxin-like compounds in Ontario Great Lakes anglers. *Chemosphere*, Vol. 34, Nos. 5-7, pp. 1401-1409.
- 24. Jiminez, B., L.M. Hernandez, E. Eljarrat, J. Rivera, and M.J. Gonzalez (1996) Levels of PCDDs, PCDFs and non-ortho PCBs in serum samples of non-exposed individuals living in Madrid (Spain). *Chemosphere*, Vol. 33, No. 12, pp. 2403-2410.
- 25. Papke, O., M. Ball, A. Lis, and J. Wuthe (1996) PCDD/PCDFs in Humans, Follow-up of Background Data for Germany, 1994. *Chemosphere*, Vol. 32, No. 3, pp. 575-582.
- 26. Schecter, A., J.J. Ryan, O. Papke, M. Ball, and A. Lis (1993) Elevated dioxin levels in the blood of male and female Russian workers with and without chloracne 25 years after phenoxyherbicide exposure: the UFA "Khimprom" incident. *Chemosphere*, Vol. 27, Nos. 1-3, pp. 253-258.
- Kocan, A., J. Petrik, B. Drobna, and J. Chovancova (1994) Levels of PCBs and some organochlorine pesticides in the human population of selected areas of the Slovak Republic. I. Blood. *Chemosphere*, Vol. 29, Nos. 9-11, pp. 2315-2325.
- 28. Schecter, A. (1992) Dioxins and dibenzofurans in potentially exposed workers: serial tissue levels in a worker exposed in a PCB transformer fire cleanup and blood levels in three exposed chemists. *Chemosphere*, Vol. 25, Nos. 7-10, pp. 1117-1122.
- 29. Koopman-Esseboom,M., C. Huisman, N. Weisglas-Kuperus, E.R. Boersma, M.A.J. de Ridder, C.G. Van der Paauw, L.G.M.Th. Tuinstra, and P.J.J. Sauer (1994) Dioxin and PCB levels in blood and human milk in relation to living areas in The Netherlands. *Chemosphere*, Vol. 29, Nos. 9-11, pp. 2327-2338.
- 30. Masuda, Yoshito (1996) Approach to risk assessment of chlorinated dioxins from Yusho PCB poisoning. *Chemosphere*, Vol. 32, No. 3, pp. 583-594.
- Schecter, A., M.J. DeVito, J. Stanley, and K. Boggess. (1993) Dioxins, dibenzofurans and dioxin-like PCBs in blood of Americans. *DIOXIN* '93: 13th International symposium on chlorinated dioxins and related compounds, Vienna. Organohalogen compounds, Vol. 13, pp 51-54.
- 32. Piacitelli, L.A., M. Haring Sweeney, M.A. Fingerhut, D.G. Patterson, Jr., W.E. Turner, L.B. Connally, K.K. Wille, and B. Tompkins (1992) Serum levels of PCDDs and PCDFs among workers exposed to 2,3,7,8-TCDD contaminated chemicals. *Chemosphere*, Vol. 25, Nos. 1-2, pp. 251-254.
- 33. Schecter, A., J.J. Ryan, and O. Papke (1994) Elevated dioxin blood levels in Russian chemical workers and their children following maternal exposure. *Chemosphere*, Vol. 29, Nos. 9-11, pp. 2361-2370.

Appendix A3

Dioxins and Furans in the Environment: Sources, Levels, Fate and Toxicity

1

}

]

ļ

]

}

. }

I

TABLE OF CONTENTS

Page
Sources of Dioxins and Furans in the Environment1
Combustion Sources
Municipal Incineration
Automobile Exhaust
Industrial Sources
Pulp and Paper Industry4
Municipal Waste Water Treatment4
Pharmaceuticals4
Pesticides5
Metal Production5
Petroleum Industry5
Chemical Sources
Chlorophenols6
Polychlorinated Biphenyls (PCBs)6
Chemical Wastes7
Natural Sources
Environmental Levels of Dioxins and Furans
Transport and Persistence
Air
Soils and Sediments9
Environmental Fate of Dioxins and Furans

Toxicity	of Dioxins and Furans9
Uptake a	nd Bioaccumulation10
	Plants10
	Foraging Animals10
	Fish10
	Humans11
Kinetics,	Metabolism and Toxicity
	Animals12
	Humans12
	Mechanism of Toxicity13
Reference	es14
LIST OF	TABLES
Table A3	.1 Estimated dioxin releases to the U.S. environment (adapted from Stillman 1990)2
Table A3	.2 Dioxin/furan levels in the Canadian environment (Environment Canada 1990)

}

7

SOURCES OF DIOXINS AND FURANS IN THE ENVIRONMENT

This is not an exhaustive review, but rather a selective overview highlighting progress in the field with reference to topics relevant to this project.

Since the advent and widespread use of synthetic organochlorines, there has been an increasing global awareness of potential ecological effects arising from exposure to some of these chemicals (CADAS 1994; IOM 1994; ISCDRC 1995). Increasing public concern has largely paralleled improvements in analytical detection limits for many xenobiotics. Detection limits have improved from the ppm (1 part in 10⁶) in the 1950s to parts per quadrillion (1 part in 10¹⁵) in the 1980s resulting in the ability to detect trace levels of synthetic compounds, even in apparently unpolluted environments. Attaching significance to the levels that analytical chemists can detect is a major challenge facing regulatory agencies.

Dioxins were claimed to be detected in ancient sediments (8,000 years old), which suggests that dioxins existed before industries were developed (Hashimoto *et al.*1990). For example, forest fires have been cited as one possible natural source of dioxins (Tashiro *et al.* 1990; Zook and Rappe 1994). However, data on this point are inconclusive as other sediment studies in the Great Lakes in Canada and three high altitude lakes in Switzerland have failed to detect dioxins in pre-industrial age sediments (Hites 1990).

Four primary routes have been identified by which dioxins and furans enter the environment:

- combustion sources;
- chemical products;
- industrial processes; and
- natural sources.

Each of these sources is discussed below. Major contributors in the USA are listed in Table A3.1. The contributors on the list would likely be similar in Canada, although the order may be different (e.g., historically, in British Columbia the pulp and paper industry and forest fires would probably contribute more to the total).

Source	Dioxin TEQ kg/y	Source	Dioxin TEQ kg/y
Municipal Waste Incinerators	21.1	Secondary Copper Smelters	4.4
Coal Combustion	4.0	Wood Combustion	1.9
Forest Fires	1.8	Magnesium Production	0.9
Magnesium Production	0.9	Municipal Waste Treatment Sludge	0.7
Bleached Pulp Manufacturing	0.55	Hospital Incinerator	0.5
Hazardous Waste Incineration	0.3	Municipal Sludge Incineration	0.2
Municipal Waste Treatment Effluent	0.1	Petroleum Refining	0.1
Other	0.2		

Table A3.1Estimated dioxin releases to the U.S. environment (adapted from Stillman 1990).

Combustion Sources

Inputs of dioxins and furans into the environment by combustion processes originate from many sources. For example, incomplete combustion of organic material in the presence of chlorine, such as during waste incineration, is an important source of dioxin (Zook and Rappe 1994). In the absence of a more extensive database, the relative contributions from the different sources are difficult to assess. The following section describes those combustion sources that have been studied in greatest detail.

Municipal Incineration

Approximately 0.6 tonnes of garbage per person per year are incinerated in Canada. In 1984, Environment Canada established the National Incinerator Testing and Evaluation Program (NITEP) to address a wide range of environmental issues related to incineration. The study determined, among other things, that incineration resulted in the release of many pollutants (including dioxins) directly into the atmosphere. It was also determined that fly ash precipitated from municipal incinerators contained dioxins in the range of ten to 170 parts per billion (ppb). Plastics such as polyvinyl chloride are a major source of organochlorine compounds in municipal waste, and may provide precursors for PCDD and PCDF (Environment Canada 1990; Rottluff *et al.* 1990; Christmann *et al.* 1989a), although the data are not conclusive (NATO 1988 a,b,c; Giugliano *et al.* 1989). Several studies have suggested that there is considerable potential for reducing levels of emitted dioxins through the proper design and operation of incinerator facilities (Hiroaka *et al.* 1989; Naikwadi and Karasek 1989; Manscher *et al.* 1990).

Several different mechanisms have been proposed to account for the formation of dioxins and furans during incineration of municipal waste (Dickson *et al.* 1989; Stieglitz *et al.* 1989; Barton

et al. 1990; Rottluff et al. 1990; and Ward 1989). The following represent four different hypotheses:

- Dioxins and furans are present in the incinerator feed and pass through the combustor undestroyed. This is unlikely to be a significant pathway as there is often a poor correlation between the levels of dioxins emitted from a plant and the nature of the feed;
- Precursors, formed from radicals generated during combustion, react on the surface of fly ash at lower temperatures to form dioxins and furans;
- Organochlorine compounds are synthesized *de novo* from particulate carbon present on fly ash which reacts with oxygen and chlorides, possibly in the presence of a metal catalyst (e.g., Cu(II)) to form dioxins and other compounds; and
- Dioxins and furans may be formed when long-chain hydrocarbons (like PVC or cellulose) are not completely oxidized during combustion. A correlation between total organic halogen (TOX) levels in feed and the total level of PCDDs and PCDFs emitted has been observed (NATO 1988c).

It is possible that more than one of the above mechanisms may be operative at the same time. Total and relative amounts of PCDD/PCDF and other compounds in incinerator emissions vary daily and somehow depend on the incinerator operation conditions (NATO 1988c). Studies in the United Kingdom indicate that dioxin levels found in ash residues from facilities incinerating clinical wastes (which traditionally have a high level of PVC, plastics, etc.) are often much higher than incinerators receiving non-clinical wastes (Brown *et al.* 1990). The dominant dioxin associated with incinerator fly ash is usually O8CDD, one of the least toxic forms of dioxin (Harris 1990), although all other congeners have been detected.

Automobile Exhaust

A Swedish study found that automobiles burning leaded gas produced between 0.05 and 0.3 nanograms of 2,3,7,8-T4CDD/km. Dibromomethane (DBE) and dichloroethane (DCE), which are added as scavengers to leaded gasoline to prevent lead deposits in engines, may be involved in combustion mechanisms leading to dioxin formation. A 1989 New Zealand study also detected low levels of some dioxin and furan congeners in car exhaust (Bingham *et al.* 1989). Studies have produced conflicting results regarding detection of dioxins and furans in exhausts of cars burning unleaded gas (Rottluff *et al.* 1990; NATO 1988c).

Industrial Sources

There is no known commercial use for dioxins or furans; these compounds are not deliberately synthesized, but are produced as unwanted contaminants during various manufacturing processes.

Pulp and Paper Industry

The pulp and paper industry is a source of chlorinated organic release into the environment, primarily as a result of effluent discharges from bleached kraft mills. In the late 1980's there was increasing public concern regarding impacts of these compounds on the aquatic environment, specifically on the fishing industry, with its indirect implications on human health. According to Swedish and Canadian studies, dioxins were formed in pulp bleaching stages using chlorine. Quantities of dioxins and furans formed are strongly dependent on the amount of chlorine used per tonne of pulp produced. Very low concentrations (picograms per gram of product, or parts per trillion) of PCDD and PCDF have been detected in some bleached paper products. In general, bleached softwood kraft pulps had higher concentrations of 2,3,7,8-T4CDD/F than bleached hardwood pulps. Bleached kraft mills also had higher concentrations of 2,3,7,8-T4CDD/F in wastewater effluents and sludges than sulphite mills (Whittemore *et al.* 1990).

A recent study claimed that dioxin congeners were detected in unbleached pulp and concluded that chlorine bleaching is not necessarily the only source of dioxins and furans in pulping of wood. It was hypothesized that dioxins found in unbleached pulp were most likely formed from chlorophenols during cooking. One of the sources of chlorophenols may have been the use of chlorine for disinfection and decolourizing of freshwater (Kitunen and Salkinoja-Salonen 1990).

Although effluent concentrations of dioxins and furans were low, because of the large volume of effluent released into the environment each year, the pulp and paper industry was estimated to release between 100 and 150 grams/year of dioxins and 2,000 to 3,000 grams/year of furans into the Canadian environment (Environment Canada 1990). Through changes in the bleaching process and elimination of elemental chlorine during this process, dioxins have become virtually undectectable.

Municipal Waste Water Treatment

The sources responsible for the PCDD and PCDF detected in digested sludge produced by wastewater treatment plants is dependent on the contaminant profiles of the input water. Main contributors are probably stormwater run-offs from the same or similar sites/sources discussed in this section, namely municipal and hospital incinerators, automobile exhausts, etc. (Naf 1990). Studies in Sweden found that storm sewer water (urban runoff) contained up to 2,500 pg/m³ (2,3,7,8-T4CDD-TEQ) dioxins (Naf 1990; Rappe *et al.* 1989). A study performed by the Ontario Ministry of Environment of 37 Ontario municipal water pollution control plants indicated that O8CDD is the principal dioxin/furan congener detected in raw and treated sludge samples (Ho and Clement 1990).

Pharmaceuticals

Some medical, dental, and cosmetic products contained the bactericide hexachlorophene. Hexachlorophene is a derivative of trichlorophenol and was shown to be contaminated with dioxins and furans. Subsequently, its use has virtually been eliminated in products used by humans. Soft soaps, tall oil and tall oil resins (all by-products of the pulping processes) were found to be contaminated with dioxins at levels comparable to levels that were recorded in effluents of bleached pulp mills (Rappe *et al.* 1990).

Pesticides

Other potential chemical sources of dioxins are from phenoxy herbicides like 2,4dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), and mixtures like Agent Orange. Agent Orange, a defoliant widely used in Viet Nam, was a one-to-one mix of 2,4-D and 2,4,5-T. Use of 2,4,5-T was banned in the United States in 1985, and is no longer used in Canada. However, 2,4-D is now the third most widely used pesticide in the United States, with an estimated 52 to 67 million pounds being used in 1987 (Holloway 1990). Levels of 2,3,7,8-T4CDD/F in 2,4-D are generally below detection limit or at very low levels. The application of these substances to public land is now strictly controlled in Canada, resulting in reduced losses to the environment.

Metal Production

Dioxins are released during the manufacture of iron and steel, in particular the melting of scrap metal which may be coated with paints or other polymers (Antonssen *et al.* 1989; Tysklind *et al.* 1989; NSEPB 1988; Zook and Rappe 1994). Some investigations have also reported high local concentrations of dioxins and furans in the vicinity of copper reclamation plants. In these facilities, scrap copper containing varying quantities of PVC-coated cables, is pre-cleaned by combustion or pyrolysis and then recycled in a copper smelter (cited in Christman *et al.* 1989 b).

Factors that influence dioxin emissions from metallurgical processes are the chlorine load and oxygen level. Efficient final oxidation of the process gas is likely to reduce emissions to a greater extent than melting less contaminated scrap metals. A reduction of dioxin emissions to the air can also be achieved through removal of particulate material by filtering stack emissions (Öberg and Allhammer 1989).

Petroleum Industry

Catalyst regeneration from reforming operations in the petroleum refining industry was recently recognized as another potential source of dioxins and furans. The internal aqueous streams contained parts per quadrillion (ppq) levels of dioxins and furans, while stack emissions contained ng/m³ concentrations (Thompson *et al.* 1990).

Chemical Sources

Dioxins are not deliberately synthesized, but are produced as contaminants in a variety of chemical processes. For chemical manufacturing, the following processes have been ranked in

order of decreasing priority regarding levels of dioxins/furan contamination levels (NATO 1988a):

- processes to manufacture chlorophenols and their derivatives;
- processes to manufacture chlorobenzenes and substituted chlorobenzenes;
- synthesis of aliphatic chlorine compounds;
- methods involving chlorine-containing intermediates;
- inorganic chlorochemical processes; and
- processes applying chlorinated catalysts and solvents.

Chlorophenols

Chlorophenols have been widely used since the 1930s as fungicides, slimicides, insecticides, and bactericides. Concentrations of dioxins in commercially produced chlorophenols were found to range between 0.2 ppm and 690 ppm (Rottluff *et al.* 1990). The wood preservative pentachlorophenol (PCP) was identified in the early 1980s as a significant source of dioxins in the environment (NRCC 1981). Since the problem was identified, the dioxin content has been steadily reduced to approximately one tenth of what it was originally. However, due to lack of detailed inventory of chemical waste sites in Canada, contribution of these sources to the dioxin/furan load to the environment is difficult to estimate. For example, although sawmills have largely stopped using PCP-based preservatives, old diptank areas, lumber storage areas, etc., which have not been cleaned up, may still be a source of dioxins.

Polychlorinated Biphenyls (PCBs)

PCBs were originally thought to be relatively inert and nontoxic compounds. Mixtures known to contain PCBs are: transformer and capacitor fluids, heat transfer fluids, hydraulic oils, etc. PCB mixtures have been found to contain PCDF substituted with between four and seven chlorine atoms, primarily the tetra- and penta-substituted derivatives, but not dioxin congeners. Furans are known to form when PCBs are heated or burned (Rottluff 1990; Erickson 1989). The mechanism of formation of PCDFs from PCBs is straightforward requiring heat to provide energy for chemical reaction and oxygen. As a result of public concern, use of PCB-containing compounds has been curtailed or eliminated, and storage of contaminated compounds is now also strictly controlled. This has resulted in reduced losses to the environment.

Chemical Wastes

Sites containing chemical wastes (e.g., landfills, waste dumps, and contaminated industrial sites), may serve as point sources for dioxins/furans in the environment. Lack of detailed inventory of chemical waste disposal sites, and lack of knowledge of composition of much of the waste that is disposed of at dump sites, makes it difficult, if not impossible, to accurately assess the magnitude of the problem.

Natural Sources

Pre-industrial age sediments (8,000 years old) have been found to contain detectable levels of dioxins and furans, suggesting natural events (e.g., volcanoes or forest fires) are potential sources of dioxins/furans (Hashimoto *et al.* 1990).

It has been suggested that trace amounts of chlorine found naturally in wood may be sufficient to allow dioxin and furan formation to occur when wood is burned under appropriate conditions. Forest fires represent large-scale combustion of wood under uncontrolled, inefficient conditions, and may be a significant source of dioxins in the environment. A joint Canadian/US program, which monitored the behaviour and environmental impact of prescribed (forest) burns, resulted in detection of varying levels of dioxins and furans in collected air samples. Soil samples indicated that there was a small increase in levels of higher chlorinated dioxins and furans caused by the fire, however data were not conclusive (Tashiro *et al.* 1990; Rottluff *et al.* 1990). There is insufficient data to assess the relative importance of these sources, compared with other sources discussed (Environment Canada 1990).

ENVIRONMENTAL LEVELS OF DIOXINS AND FURANS

Analytical methodologies capable of measuring environmental contaminants in parts per trillion range (nanograms/kilogram) revealed that dioxins and furans are ubiquitous environmental contaminants. The ability to detect dioxins in samples collected from areas remote from industrial activity and in a wide range of biological species, has prompted considerable research into mechanisms of transportation and persistence of these compounds throughout the environment, such as in Canada (Table A3.2).

Medium	Range in Concentration	Medium	Range in Concentration
Ambient Air	0.4 to 36.7 pg total dioxins and furans per cubic metre	Ontario drinking water	Not detectable (ND) to 46 pg/L O8CDD
Soil: urban backyards, public areas, parkland	50 to 14,100 pg/g total dioxins and furans	Mammals	ND to 37 ng/kg 2,3,7,8-T4CDD
Birds	ND to 1,996 ng/kg 2,3,7,8-T4CDD	Reptiles	ND to 474 ng/kg 2,3,7,8-T4CDD
Amphibians	ND to 35 ng/kg 2,3,7,8-T4CDD	Crabs	ND to 662 ng/kg 2,3,7,8-T4CDD
Shellfish	ND to 31 ng/kg 2,3,7,8-T4CDD	Fish	ND to 137 ng/kg 2,3,7,8-T4CDD
Human fat tissues	3-10 ng/kg 2,3,7,8-T4CDD		· · · · · · · · · · · · · · · · · · ·

Table A3.2 Dioxin/furan levels in the Canadian environment (Environment Canada 1990).

ND=Not detected.

Transport and Persistence

Due to their refractile nature, chlorinated organic compounds (particularly dioxins and furans), tend to be very persistent in the environment. Data on the relative (environmental) persistence of different dioxin congeners are not conclusive. Some reports claim that 2,3,7,8-T4CDD has a degradation half-life of ten years or longer (in absence of UV-light), while another report claims that only the most chlorinated dioxins (i.e., least toxic) are environmentally persistent (Eitzer and Hites 1989; Hites 1990; ISCDRC 1995).

Air

New sampling technologies have allowed for the detection of low levels of dioxins and furans adsorbed onto suspended particulate matter (Hunt 1989; Tashiro *et al.* 1989; Christmann *et al.* 1989b). These compounds can be transported to remote parts of the country by prevailing winds and are deposited on sediments and soils (Maisel and Hunt 1990). Air quality surveys performed in Ontario determined that the average ambient air concentrations of dioxins were well below the provincial ambient air guideline of 30 pg/m³ for concentration of total PCDD (Bobet *el al.* 1990; Steer *et al.* 1990). A similar study in a northeastern American urban coastal environment (Hunt and Maisel 1990) found that the ambient concentration range never exceeded 2.5 pg/m³ and was usually well below 1.0 pg/m³. The isomer profile in airborne samples is generally consistent with that for emissions from combustion sources (NSEPB 1988), however combustion sources can show a substantial range in concentrations and PCDD/F profile (the relative amounts of compounds grouped by level of chlorination). Conversely, sediment samples (the ultimate environmental sink) have a more consistent isomer profile. This strongly suggests that transformations occur during aerial transport and deposition (Eitzer and Hites 1989).

hel

Soils and Sediments

Soils, and ultimately sediments, are the final sink for most xenobiotics including dioxins and furans. Although dioxins tend to accumulate on particulate surfaces, evidence suggests that in many cases they become immobilized resulting in reduced bioavailability (Umbreit 1986; Servos 1988; Servos and Muir 1989). An Ontario Ministry of Environment study determined that PCDDs and PCDFs appear to be relatively ubiquitous at very low levels in rural soils and slightly higher levels in urban soils (Pearson *et al.* 1990). A similar study performed in the United Kingdom also determined that mean levels for urban samples are significantly higher than rural and semi-rural areas (Creaser *et al.* 1990). Composition of sediment or soil affects the degree of binding; soils rich in humic material tend to immobilize organic contaminants better than sandy soils. Another study involving PCB distribution in sediments found that distribution of PCBs within an impoundment (e.g., dam or lake) was controlled by distribution of fine-grained sediments (Frink *et al.* 1989). Because dioxins partition rapidly into sediments, where they tend to accumulate due to low degradation rates, sediments may act as a source of dioxins and furans to biota long after inputs have been reduced or eliminated.

ENVIRONMENTAL FATE OF DIOXINS AND FURANS

Relative distribution of dioxins and furans from combustion sources do not resemble the pattern observed in sediments. A combustion profile shows a relatively even distribution of congeners, whereas in a profile of sediment, the octachlorodioxin dominates, the heptachlorofurans and dioxins are significant, and other homologues are much less abundant. Several different mechanisms have been proposed to explain differences (Hites 1990):

- The less chlorinated dioxins and furans could degrade, perhaps biologically, after deposition in the sediments. This is unlikely since the relative composition of dioxins and furans is constant down through sediment core and is unlikely that all these compounds would be degrading at the same rate;
- Perhaps the less chlorinated dioxins and furans are lost preferentially from the atmosphere by photochemical processes. Dioxins absorb strongly in the UV at 310-320 nm and may thus be degraded by photolysis when exposed to UV-irradiation; and
- Only the more highly chlorinated dioxins and furans are deposited from the atmosphere. For example, precipitation scavenging processes could favour removal of only the more highly chlorinated (i.e., less volatile) compounds.

TOXICITY OF DIOXINS AND FURANS

As dioxin has been called the most toxic chemical known, numerous studies on toxicology of dioxins and related compounds have yielded a large body of literature. A major problem facing regulatory agencies is the wide range in sensitivities that different species exhibit towards dioxin.

Uptake and Bioaccumulation

The low water solubility of dioxins and furans contributes to their propensity for accumulating in biological tissues. In addition, many of these compounds are degraded very slowly, and therefore persist in body tissues for extended periods. Dioxins and furans move through the food chain and are found in food consumed by humans. Accumulation is determined by both uptake and elimination rates.

Plants

The nature of the soil in which the plant grows would undoubtedly have a strong influence on the absorption behavior of dioxins/furans by root systems. In general, however, absorption through the root system of plants does not appear to be a significant pathway. Samples of vegetation taken in the UK contained detectable levels of most congener groups indicating widespread contamination (Startin *et al.* 1989). Data suggest that accumulation of dioxins and furans in above ground plants mainly results from atmospheric deposition of gaseous and particulate phase TCDD/F (Reischl *et al.* 1989).

Foraging Animals

A study which examined bioaccumulation of dioxins and furans in chickens and cows foraging in a contaminated area concluded that (Chang *et al.* 1989):

- foraging animals assimilate PCDD/Fs from soil containing low concentrations of these compounds; the toxins accumulated primarily in liver, adipose tissue and eggs;
- the congener profiles seen in chicken and bovine liver tissue and chicken eggs more nearly approximate the congener profile of the contaminated soil than the profile seen in adipose tissue; and
- concentrations detected in eggs, poultry and bovine tissues are of public health concern; moderate consumption by humans (e.g., one egg per day), could result in exposure in the range of 10 to 30 pg/kg per day, which would exceed most Acceptable Daily Intake levels (ADIs); The data suggested that unacceptable food animal contamination could result from exposure to soils with TCDD toxic equivalent (TEQ) concentrations in the 10-50 ppt (or pg/g) range, which is 20-100 times lower than the commonly used 1 ppb action level for contaminated soils (Chang *et al.* 1989).

Fish

A long-term laboratory experiment in which year-old lake trout (*Salvelinus namaycush*) were exposed to Lake Ontario sediment, showed that bioaccumulation of 2,3,7,8-T4CDD occurred primarily through the food chain and secondarily through contact with contaminated sediment. The water exposure route, even under simulated equilibrium conditions and low suspended solids

concentrations, did not appear to make a significant contribution to 2,3,7,8-T4CDD accumulation (Batterman *et al.* 1989).

Studies in Sweden (Bergqvist *et al.* 1989) and in British Columbia (Dwernychuk 1989, a,b, 1990, a,b,c,d,e,f,g; Dwernychuk *et al.* 1991 to 1998) have resulted in detection of dioxins and furans in a range of freshwater and marine species. In contrast to mammals, liver in fish is quantitatively not the most important organ for deposition of 2,3,7,8-substituted dioxins and furans. In one experiment, only one to four percent of the total oral-dosed TCDFs were retained in liver of exposed carp. In rainbow trout, 90 percent of an administered dose of 2,3,7,8-T4CDD was stored in the skin and visceral tissue. In the carp, the majority of 2,3,7,8-T4CDD was found in the fat above the brains and the visceral fat, after exposure to contaminated sediment (cited in van der Weiden *et al.* 1989).

In addition to fish, dioxins and furans have also been detected in crabs, mussels and oysters, indicating widespread contamination in both marine and freshwater ecosystems (Dwernychuk 1989, a,b, 1990, a,b,c,d,e,f,g; Dwernychuk *et al.* 1991 to 1998; Miyata *et al.* 1989).

Humans

PCDD and PCDF have been detected in human tissues in many industrialized countries. Concentrations of PCDD in human tissue varied from 1 to 1,000 parts per trillion depending on the degree of chlorination. Isomer specific analysis of food, air, water and soil indicates food is the major source of human exposure to PCDD/Fs (Vainio *et al.* 1989; Birmingham 1990). Ingestion of dioxin/furan contaminated food likely represent the most significant exposure source.

Canadian estimates suggest a daily average intake of 1.52 pg of 2,3,7,8-T4CDD equivalents per kg of body weight (Birmingham *et al.* 1989a). CADAS (1994) stated that the World Health Organization ADI for a TEQ of 10 pg per kg body weight per day of PCDD/F was reasonable.

Daily intake may be significantly higher for certain groups of people. For example, persons with an unusually high consumption of fish may have higher exposure. Detectable levels of dioxins and furans have been found in fish, beef, pork, poultry, eggs, and milk. Near-detection limit concentrations were also detected in fruits, vegetables and wheat-based products (Environment Canada 1990; de Wit *et al.* 1990; NSEPD 1988). Plants do not appear to take up dioxins through their root systems; contaminated food is probably a result of external contamination from growing in contaminated soils, and/or contamination of leaves/fruit by pesticide spraying, contaminated particulate deposition, etc.

A study of the risks associated with human exposure to dioxin from municipal solid waste incineration, indicate that despite slightly elevated air concentrations of dioxins in the vicinity of incinerators, background intake accounted for 99.3 % of total exposure to PCDD/Fs (Travis and Hattemer-Frey 1989; Greim 1990). Cigarette smoking is another source of exposure to dioxins. Total concentration of dioxins in cigarette smoke was determined to be 5 micrograms per cubic meter. In general, concentrations of furans are usually lower than concentrations of dioxins.

Kinetics, Metabolism and Toxicity

In animal studies, absorption efficiency of dioxins and furans was dependent on the medium in which they were administered, the specific compound involved, and whether exposure took place through the mouth, skin, or lungs. In general, absorption is greater when dioxins and furans are ingested than when applied to the skin. Absorbed dioxins and furans tend to be found in different concentrations in various tissues within the body in proportion to the fat content of the tissue (Environment Canada 1990). The ability to metabolize dioxins and furans appears to be highly species specific (e.g., rats appear to be highly efficient at eliminating dioxins, while guinea pigs have a limited ability (NCASI Technical Bulletin 1987)). In humans, the half-life of 2,3,7,8-T4CDD has been estimated to be between five and eight years (NCASI Technical Bulletin 1987).

Animals

As discussed above, there are large differences in toxicity among various dioxins. 2,3,7,8-T4CDD is the most toxic, and O8CDD the least toxic congener in the dioxin family. There are also large differences in susceptibility of different animal species to dioxins. For example, the guinea pig is approximately 1,000 times more susceptible to 2,3,7,8-T4CDD than hamsters. PCDD is extremely toxic to guinea pigs (LD_{50} 0.8 µg/kg body weight), and less toxic towards mice (280 µg/kg) and hamsters (5,000 µg/kg). These figures highlight a very strong species dependence towards toxicity. Animal studies have demonstrated 2,3,7,8-T4CDD is teratogenic and fetotoxic in rats, mice, rabbits and ferrets; and fetotoxic in monkeys (US EPA 1988; Silkworth 1989; Abbott and Birnbaum 1990; Chahoud *et al.* 1989). 2,3,7,8-T4CDD produced hydronephrosis and cleft palate in mice. The central nervous system has also been implicated in 2,3,7,8-T4CDD toxicity in rats (Pohjanvirta *et al.* 1989).

Humans

There have been several industrial accidents or incidents in which people were exposed to high concentrations of 2,3,7,8-T4CDD. Events in Times Beach, Missouri, and Seveso, Italy, where as many as 40,000 people were exposed, are probably the best known and most researched (Schecter 1994).

Studies of these and other exposed populations indicate that humans are not particularly sensitive to 2,3,7,8-T4CDD. Initial high exposures result in chloracne. Studies of workers who suffered from chronic exposure have not yet produced convincing evidence of elevated levels of cancer, heart disease or overall mortality (Harris 1990) among the exposed group, compared to controls. However, chronic exposure has been implicated in aryl hydrocarbon hydroxylase (AHH) induction, thymic atrophy, hyperkeratosis, and chloracne in man (Paasivirta 1988). A half-life of 4.95 years was reported for humans after ingestion of a single dose of radiolabeled TCDD. Exposure of humans to dioxins is believed to increase the risk of soft tissue sarcoma (STS) (Eriksson *et al.* 1990; IOM 1994), although much of the cancer epidemiology relating to TCDD and TCDF is inconclusive (Vainio *et al.* 1989; Skene *et al.* 1989; CADAS 1994).

Despite lack of direct evidence that levels of dioxins and furans commonly found in the environment pose a significant health threat to humans, regulatory agencies agree that these compounds are undesirable environmental contaminants, and that their unintentional production and release should be reduced as much as possible. In Canada, decision was made that 10 pg 2,3,7,8-T4CDD (2,3,7,8-T4CDD-TEQ) per kilogram body weight per day is an appropriate value to protect humans exposed to all sources of PCDD and PCDF mixtures (Birmingham *et al.* 1989b), and this matches the current World Health Organization ADI (CADAS 1994). In Canada, 30 ppt TEQ for liver, hepatopancreas and fat, and 15 ppt TEQ for muscle tissue has been set by Health Canada as an upper limit which would trigger consumption advisories.

Mechanism of Toxicity

An explanation of toxicity of dioxin has been developed from the "cytosolic receptor" theory. This theory proposed that many dioxin congeners have the ability to bind to a class of intracellular receptors. These receptors are soluble (i.e., not bound to the cell membrane), which allows for the receptor/TCDD complex to migrate and bind directly with DNA (Holloway 1990). This binding leads to induction of aryl hydrocarbon hydroxylase (AHH), a key enzyme in steroid metabolism. AHH activity is normally turned on when natural xenobiotics such as polycyclic aromatic hydrocarbons (PAHs) bind to a receptor protein. The process is self-regulating because the enzyme degrades the PAH. As levels of PAH fall, the stimulus abates and AHH activity drops back to normal.

However, due to the refractile nature of dioxin congeners, the AHH enzyme is unable to degrade them, resulting in the enzyme system being stuck in the "on" position. The toxic action of dioxins is therefore believed to be a manifestation of AHH induction, and includes thymic atrophy, hyperkeratosis, and chloracne (Paasivirta 1988; Webster 1990; IOM 1994; Schecter 1994).

There is general agreement in the research community the more work is required on the fate and effects of dioxins in the environment and impacts to human health. Annual conferences focussing on these compounds are testament to the significant research underway in this field (e.g., International Symposium on Chlorinated Dioxins and Related Compounds).

REFERENCES

- Abbott, B.D. and L.S. Birnbaum. 1990. Effects of TC₄DD on embryonic ureteric epithelial EGF receptor expression and cell proliferation. Teratology 41:71-84.
- Antonsson, A.-B., S. Runmark and J. Mowrer. 1989. Dioxins in the work environment in steel mills. Chemosphere 19(1-6):699-704.
- Barton, R.G., W.D. Clark, W.S. Lanier and W.R. Seeker. 1990. Dioxin emissions from waste incinerators. Chemosphere 20(10-12):1825-1832.
- Batterman, A.R., P.M. Cook, K.B. Lodge, D.B. Lothenbach and B.C. Butterworth. 1989. Methodology used for a laboratory determination of relative contributions of water, sediment and food chain routes of uptake for 2,3,7,8-TC₄DD bioaccumulation by lake trout in Lake Ontario. Chemosphere 19(1-6):451-458.
- Bergqvist, P.A., S. Bergek, H. Hallbäck, C. Rappe and S.A. Slorach. 1989. Dioxins in cod and herring from seas around Sweden. Chemosphere 19(1-6):513-516.
- Bingham, A.G., C.J. Edmunds, B.W.L. Graham and M.T. Jones. 1989. Determination of PCDDs and PCDFs in car exhaust. Chemosphere 19(1-6):669-673.
- Birmingham, B., B. Thorpe, R. Frank, R. Clement, R. Tosine, G. Fleming, J. Ashman, J. Wheeler, B.D. Ripley and J.J. Ryan. 1989a. Dietary intake of PCDD and PCDF from food in Ontario, Canada. Chemoshere 19(1-6):507-512.
- Birmingham, B., A. Gilman, D. Grant, J. Salminen, M. Boddigton, B. Thorpe, I. Wile, P. Toft and V. Armstrong. 1989b. PCDD/PCDF multimedia exposure analysis for the Canadian population: A detailed exposure estimation. Chemosphere 19(1-6):637-642.
- Bobet, E., M.F. Berard and T. Dann. 1990. The Measurement of PCDD and PCDF in ambient air in south-western Ontario. Chemosphere 20(10-12):1439-1445.
- Brown, R.S., K. Pettit, K.J. Munday, P.W. Jones and W. Noble. 1990. Incineration, the British Experience. Chemosphere 20(10-12): 1785-1791.
- CADAS (Applications committee of the academy of sciences of France). 1994. Dioxins and its analogues. Joint Report No. 4: 109 p. Paris: Academie des Sciences.
- Chang, R., D. Hayward, L. Goldman, M. Harnly, J. Flattery and R. Stephans. 1989. Foraging farm animals as biomonitors for dioxin contamination. Chemosphere 19(1-6):481-486.
- Chahoud, I., R. Krowke, A. Schimmel, H.-J. Merker and D. Neubert. 1989. Reproductive toxicology and pharmacokinetics of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Archives of Toxicology 63:432-439.

าต

- Christmann, W., D. Kasiske, K.D. Klöppel, H. Partscht and W. Rotard. 1989a. Combustion of polyvinylchloride - an important source for the formation of PCDD/PCDF. Chemosphere 19(1-6):387-392.
- Christmann, W., H. Klöppel, H. Partrscht and W. Rotard. 1989b. Determination of PCDD/PCDF in ambient air. Chemosphere 19(1-6):521-526.
- Creaser, C.S., A.R. Fernandes, S.J. Harrad and E.A. Cox. 1990. Levels and sources of PCDDs and PCDFs in urban British Soils. Chemosphere 21(8):931-938.
- de Wit, C., B. Jansson, M. Strandell, P. Jonsson, P-A. Bergqvist, S. Bergek, L-O. Kjeller, C. Rappe C., M. Olsson and S. Slorach. 1990. Results from the first year of the Swedish dioxin survey. Chemosphere 20(10-12):1473-1480.
- Dickson, L.C., D. Lenoir and O. Hutzinger. 1989. Surface-catalyzed formation of chlorinated dibenzodioxins and dibenzofurans during incineration. Chemosphere 19(1-6):277-282.
- Dwernychuk, L.W. 1989. Environmental overview of chlorinated organics and the pulp and paper industry in Sweden, Finland and West Germany. Report prepared for: MacMillan Bloedel Limited, Fletcher Challenge Canada, Western Pulp Limited Partnership and Cariboo Pulp and Paper Company. Hatfield Consultants Limited, West Vancouver, BC.
- Dwernychuk, L.W. 1989a. Bottom sediments and biological tissues: a baseline organochlorine contamination survey in the marine environment near Skeena Cellulose Inc., January/February 1989. Report prepared for: Skeena Cellulose Inc. Hatfield Consultants Limited, West Vancouver, BC.
- Dwernychuk, L.W. 1989b. Bottom sediments and biological tissues: a baseline organochlorine contamination survey in Howe Sound, January/February 1989. Report prepared for: Howe Sound Pulp and Paper Limited and Western Pulp Partnership. Hatfield Consultants Limited, West Vancouver, BC.
- Dwernychuk, L.W. 1990. Baseline organochlorine contamination study: Fraser and Thompson Rivers. Prepared for: Northwood Pulp and Timber Limited, Prince George, BC; Prince George Pulp and Paper Limited, Prince George, BC; Intercontinental Pulp Company Limited, Prince George, BC; Cariboo Pulp and Paper Company, Quesnel, BC; and Weyerhaeuser Canada Ltd., Kamloops, BC. Hatfield Consultants Limited, West Vancouver, BC.
- Dwernychuk, L.W. 1990a. Surface runoff, receiving water, bottom sediments and biological tissues: a baseline organochlorine contamination survey, January/February 1990. Prepared for: Raven Lumber Ltd. Hatfield Consultants Limited, West Vancouver, BC.

- Dwernychuk, L.W. 1990b. Effluent, receiving water, bottom sediments and biological tissues: a baseline organochlorine contamination survey, January/February 1990. Prepared for: Fletcher Challenge Canada, Elk Falls Pulp and Paper. Hatfield Consultants Limited, West Vancouver, BC.
- Dwernychuk, L.W. 1990c. Effluent, receiving water, bottom sediments and biological tissues: a baseline organochlorine contamination survey, January/February 1990. Prepared for: MacMillan Bloedel Limited, Powell River Division. Hatfield Consultants Limited, West Vancouver, BC.
- Dwernychuk, L.W. 1990d. Effluent, receiving water, bottom sediments and biological tissues: a baseline organochlorine contamination survey, January/February 1990. Prepared for: Fletcher Challenge Canada, Crofton Pulp and Paper. Hatfield Consultants Limited, West Vancouver, BC.
- Dwernychuk, L.W. 1990e. Effluent, receiving water, bottom sediments and biological tissues: a baseline organochlorine contamination survey, January/February 1990. Prepared for: MacMillan Bloedel Limited, Harmac Division. Hatfield Consultants Limited, West Vancouver, BC.
- Dwernychuk, L.W. 1990f. Effluent, receiving water, bottom sediments and biological tissues: a baseline organochlorine contamination survey, 1990. Prepared for: MacMillan Bloedel Limited, Alberni Pulp and Paper Division. Hatfield Consultants Limited, West Vancouver, BC.
- Dwernychuk, L.W. 1990g. Baseline organochlorine contamination study: Kootenay River, 1990. Prepared for: Crestbrook Forest Industries Ltd. Pulp Division, Cranbrook, BC. Hatfield Consultants Limited, West Vancouver, BC.
- Dwernychuk, L.W., G.S. Bruce and B. Gordon. 1991. Organochlorine contamination in various environmental compartments related to chemical/combustion sources: Lower Mainland/Vancouver Island/Skeena/Interior Regions. Prepared for British Columbia Ministry of Environment, Victoria, BC. Hatfield Consultants Ltd., West Vancouver, BC. November 1991. ISBN 0-7726-1558-6.
- Dwernychuk, L.W., G.S. Bruce, B. Gordon and G.P. Thomas. 1991. Fraser and Thompson Rivers: A comprehensive organochlorine study, 1990/91 (drinking water/mill effluent/ sediment/fish). Prepared for Northwood Pulp and Timber Limited, Prince George, BC; Canfor Corporation, Prince George, BC; Cariboo Pulp and Paper Company, Quesnel, BC; and Weyerhaeuser Canada Ltd., Kamloops, BC. Hatfield Consultants Ltd., West Vancouver, BC. August 1991.
- Dwernychuk, L.W., G.S. Bruce, B. Gordon and G. Thomas. 1991. Kootenay River: A comprehensive organochlorine study 1990/91 (Mill effluent/drinking water/receiving water/sediment/biological tissues. Prepared for Crestbrook Forest Industries Limited, Cranbrook, BC. Hatfield Consultants Ltd., West Vancouver, BC. November 1991.

16

ղթ

- Dwernychuk, L.W. and T.G. Boivin. 1993. Dioxin and furan levels in the Prince Rupert harbor region - 1992 (Sediment/Crab). Prepared for Skeena Cellulose Inc., Skeena Pulp Operations, Prince Rupert, BC. Hatfield Consultants Ltd., West Vancouver, BC. May 1993.
- Dwernychuk, L.W., T.G. Boivin, D. Levy and G. Bruce. 1993. FINAL REPORT: dioxin/ furan trend monitoring program - Port Alberni 1992 (Sediment/Crab). Prepared for MacMillan Bloedel Limited, Alberni Pulp and Paper Division, Port Alberni, BC. Hatfield Consultants Ltd., West Vancouver, BC. March 1993.
- Dwernychuk, L.W., T.G. Boivin and G. Bruce. 1993. FINAL REPORT: dioxin/furan trend monitoring program - Skeena Cellulose 1992 (sediment/crab/shrimp). Prepared for Skeena Cellulose Inc., Skeena Pulp Operations, Prince Rupert, BC. Hatfield Consultants Ltd., West Vancouver, BC. May 1993.
- Dwernychuk, L.W., D. Archibald and T.G. Boivin. 1993. FINAL REPORT: dioxin/furan trend monitoring program - Campbell River Mills 1992 (sediment/crab). Pre-pared for Campbell River Mills Ltd., Campbell River, BC. Hatfield Consultants Ltd., West Vancouver, BC. April 1993.
- Dwernychuk, L.W., D. Levy, T.G. Boivin and G. Bruce. 1993. FINAL REPORT: dioxin/ furan trend monitoring program - Harmac 1992 (sediment/crab). Prepared for MacMillan Bloedel Ltd., Harmac Division, Nanaimo, BC. Hatfield Consultants Ltd., West Vancouver, BC. April 1993.
- Dwernychuk, L.W., T.G. Boivin and G. Bruce. 1993. FINAL REPORT: dioxin/furan trend monitoring program - Elk Falls 1992 (sediment/crab). Prepared for Fletcher Challenge Canada Ltd., Elk Falls Pulp and Paper, Campbell River, BC. Hatfield Consultants Ltd., West Vancouver, BC. April 1993.
- Dwernychuk, L.W., T.G. Boivin, D. Levy and G. Bruce. 1993. FINAL REPORT: dioxin/ furan trend monitoring program - Crofton 1992 (sediment/crab/oyster). Prepared for Fletcher Challenge Canada Ltd., Crofton Pulp and Paper Division, Crofton, BC. Hatfield Consultants Ltd., West Vancouver, BC. March 1993.
- Dwernychuk, L.W., T.G. Boivin and G. Bruce. 1993. FINAL REPORT: dioxin/furan trend monitoring program - Howe Sound 1992 (sediment/crab/prawn/shrimp). Prepared for Howe Sound Pulp and Paper, Port Mellon, BC and Western Pulp Limited Partnership, Woodfibre Pulp Operations, Squamish, BC. Hatfield Consultants Ltd., West Vancouver, BC. March 1993.
- Dwernychuk, L.W., D. Levy, T.G. Boivin and G. Bruce. 1993. FINAL REPORT: dioxin/furan trend monitoring program - Powell River 1992 (sediment/crab/oyster). Prepared for MacMillan Bloedel Limited, Powell River Division, Powell River, BC. Hatfield Consultants Ltd., West Vancouver, BC. March 1993.

- Dwernychuk, L.W., T.G. Boivin and G.S. Bruce. 1993. FINAL REPORT: Fraser and Thompson Rivers dioxin/furan trend monitoring program 1992. Prepared for Northwood Pulp and Timber Limited, Prince George, BC; Canfor Corporation, Prince George, BC; Cariboo Pulp and Paper Company, Quesnel, BC; Weyerhaeuser Canada Limited, Kamloops, BC. Hatfield Consultants Ltd., West Vancouver, BC. November 1992.
- Dwernychuk, L.W., T.G. Boivin and G. Bruce. 1993. FINAL REPORT: dioxin/furan trend monitoring program - Powell River 1993 (sediment/crab/oyster). Prepared for MacMillan Bloedel Limited, Powell River Division, Powell River, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1993.
- Dwernychuk, L.W., T.G. Boivin and G. Bruce. 1993. FINAL REPORT: dioxin/furan trend monitoring program - Port Alberni 1993 (sediment/crab). Prepared for MacMillan Bloedel Limited, Alberni Pulp and Paper Division, Port Alberni, BC. Hatfield Consultants Ltd., West Vancouver, BC. October 1993.
- Dwernychuk, L.W., T.G. Boivin and G. Bruce. 1993. FINAL REPORT: dioxin/furan trend monitoring program - Skeena Cellulose 1993 (sediment/crab/shrimp). Prepared for Skeena Cellulose Inc., Skeena Pulp Operations, Prince Rupert, BC. Hatfield Consultants Ltd., West Vancouver, BC. December 1993.
- Dwernychuk, L.W., T.G. Boivin and G. Bruce. 1993. FINAL REPORT: dioxin/furan trend monitoring program - Elk Falls 1993 (sediment/crab). Prepared for Fletcher Challenge Canada Ltd., Elk Falls Pulp and Paper, Campbell River, BC. Hatfield Consultants Ltd., West Vancouver, BC. December 1993.
- Dwernychuk, L.W., T.G. Boivin, D. Levy and G. Bruce. 1993. FINAL REPORT: dioxin/furan trend monitoring program - Crofton 1993 (sediment/crab/oyster). Prepared for Fletcher Challenge Canada Ltd., Crofton Pulp and Paper Division, Crofton, BC. Hatfield Consultants Ltd., West Vancouver, BC. December 1993.
- Dwernychuk, L.W., T.G. Boivin and G. Bruce. 1993. FINAL REPORT: dioxin/furan trend monitoring program - Howe Sound 1993 (sediment/crab/prawn/shrimp). Prepared for Howe Sound Pulp and Paper, Port Mellon, BC and Western Pulp Limited Partnership, Woodfibre Pulp Operations, Squamish, BC. Hatfield Consultants Ltd., West Vancouver, BC. November 1993.
- Dwernychuk, L.W., T.G. Boivin and G. Bruce. 1994. FINAL REPORT: dioxin/furan trend monitoring program - Powell River 1994 (sediment/crab/oyster). Prepared for MacMillan Bloedel Limited, Powell River Division, Powell River, BC. Hatfield Consultants Ltd., West Vancouver, BC. October 1994.
- Dwernychuk, L.W., G. Bruce and T.G. Boivin. 1994. FINAL REPORT: dioxin/furan trend monitoring program - Port Alberni 1994 (sediment/crab). Prepared for MacMillan Bloedel Limited, Alberni Pulp and Paper Division, Port Alberni, BC. Hatfield Consultants Ltd., West Vancouver, BC. October 1994.

CIDA 614 Appendix A3.doc

าต

- Dwernychuk, L.W., T.G. Boivin and G. Bruce. 1994. FINAL REPORT: dioxin/furan trend monitoring program - Skeena Cellulose 1994 (sediment/crab). Prepared for Skeena Cellulose Inc., Skeena Pulp Operations, Prince Rupert, BC. Hatfield Consultants Ltd., West Vancouver, BC. October 1994.
- Dwernychuk, L.W., M. Davies, T.G. Boivin and G. Bruce. 1994. FINAL REPORT: dioxin/ furan trend monitoring program - Elk Falls 1994 (sediment/crab). Prepared for Fletcher Challenge Canada Ltd., Elk Falls Pulp and Paper, Campbell River, BC. Hatfield Consultants Ltd., West Vancouver, BC. October 1994.
- Dwernychuk, L.W., T.G. Boivin, M. Davies and G. Bruce. 1994. FINAL REPORT: dioxin/furan trend monitoring program - Crofton 1994 (sediment/crab). Prepared for Fletcher Challenge Canada Ltd., Crofton Pulp and Paper Division, Crofton, BC. Hatfield Consultants Ltd., West Vancouver, BC. October 1994.
- Dwernychuk, L.W., G. Bruce and T.G. Boivin. 1994. FINAL REPORT: dioxin/furan trend monitoring program - Howe Sound 1994 (sediment/crab). Prepared for Howe Sound Pulp and Paper, Port Mellon, BC. and Western Pulp Limited Partnership, Woodfibre Pulp Operations, Squamish, BC. Hatfield Consultants Ltd., West Vancouver, BC. October 1994.
- Dwernychuk, L.W., G. Bruce and C.H.G. Schmidt. 1995. FINAL REPORT: dioxin/furan trend monitoring program - Powell River 1995 (sediment/crab/fish). Prepared for MacMillan Bloedel Limited, Powell River Division, Powell River, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1995.
- Dwernychuk, L.W., G. Bruce and C.H.G. Schmidt. 1995. FINAL REPORT: dioxin/furan trend monitoring program - Port Alberni 1995 (sediment/crab/fish). Prepared for MacMillan Bloedel Limited, Alberni Pulp and Paper Division, Port Alberni, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1995.
- Dwernychuk, L.W., G. Bruce and C.H.G. Schmidt. 1995. FINAL REPORT: dioxin/furan trend monitoring program - Skeena Cellulose 1995 (sediment/crab/fish). Prepared for Skeena Cellulose Inc., Skeena Pulp Operations, Prince Rupert, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1995.
- Dwernychuk, L.W., G. Bruce and C.H.G. Schmidt. 1995. FINAL REPORT: dioxin/furan trend monitoring program - Skeena Cellulose 1995 (sediment/crab/fish). Prepared for Skeena Cellulose Inc., Skeena Pulp Operations, Prince Rupert, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1995.
- Dwernychuk, L.W., C.H.G. Schmidt and G. Bruce. 1995. FINAL REPORT: dioxin/furan trend monitoring program - Crofton 1995 (sediment/crab/fish). Prepared for Fletcher Challenge Canada Ltd., Crofton Pulp and Paper Division, Crofton, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1995.

- Dwernychuk, L.W., G. Bruce and C.H.G. Schmidt. 1995. FINAL REPORT: dioxin/furan trend monitoring program - Howe Sound 1995 (sediment/crab/fish). Prepared for Howe Sound Pulp and Paper, Port Mellon, BC. and Western Pulp Limited Partnership, Woodfibre Pulp Operations, Squamish, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1995.
- Dwernychuk, L.W., L.U. Young, J.A. Allan and G. Bruce. 1996. FINAL REPORT: dioxin/furan trend monitoring program - Powell River 1996 (sediment/crab/fish).
 Prepared for MacMillan Bloedel Limited, Powell River Division, Powell River, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1996.
- Dwernychuk, L.W., G. Bruce, J.A. Allan and L.U. Young. 1996. FINAL REPORT: dioxin/furan trend monitoring program - Repap British Columbia Inc., 1996 (sediment/crab/fish). Prepared for Repap British Columbia Inc., Skeena Pulp Operations, Prince Rupert, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1996.
- Dwernychuk, L.W., L.U. Young, J.A. Allan and G. Bruce. 1996. FINAL REPORT: dioxin/furan trend monitoring program - Elk Falls 1996 (sediment/crab/fish). Prepared for Fletcher Challenge Canada Ltd., Elk Falls Pulp and Paper, Campbell River, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1996.
- Dwernychuk, L.W., J.A. Allan, L.U. Young and G. Bruce. 1996. FINAL REPORT: dioxin/furan trend monitoring program - Crofton 1996 (sediment/crab/fish). Prepared for Fletcher Challenge Canada Ltd., Crofton Pulp and Paper Division, Crofton, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1996.
- Dwernychuk, L.W., L.U. Young, J.A. Allan and G. Bruce. 1996. FINAL REPORT: dioxin/furan trend monitoring program - Howe Sound 1996 (sediment/crab/fish).
 Prepared for Howe Sound Pulp and Paper, Port Mellon, BC and Western Pulp Limited Partnership, Woodfibre Pulp Operations, Squamish, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1996.
- Dwernychuk, L.W., C.H.G. Schmidt and G.S. Bruce. 1996. Fraser and Thompson Rivers dioxin/furan trend monitoring program 1995. Prepared for Northwood Pulp and Timber Ltd., Canadian Forest Products Ltd., Cariboo Pulp and Paper Company, and Weyerhaeuser Canada Ltd. Hatfield Consultants Ltd., West Vancouver, BC. August 1996.
- Dwernychuk, L.W., L.U. Young, J.A. Allan and M. Davies. 1997. FINAL REPORT: dioxin/furan trend monitoring program 1997 (sediment/crab/fish). Prepared for MB Paper, Powell River Division, Powell River, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1997.

20

ില

- Dwernychuk, L.W., L.U. Young, J.A. Allan and M. Davies. 1997. FINAL REPORT: dioxin/furan trend monitoring program 1997 (sediment/crab/fish). Prepared for Skeena Cellulose Inc., Prince Rupert, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1997.
- Dwernychuk, L.W., L.U. Young, J.A. Allan and M. Davies. 1997. FINAL REPORT: dioxin/furan trend monitoring program 1997 (crab/fish). Prepared for Fletcher Challenge Canada Ltd., Elk Falls Pulp and Paper, Campbell River, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1997.
- Dwernychuk, L.W., L.U. Young, J.A. Allan and M. Davies. 1997. FINAL REPORT: dioxin/furan trend monitoring program 1997 (Sediment/Crab/Fish). Prepared for Fletcher Challenge Canada Ltd., Crofton Pulp and Paper Division, Crofton, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1997.
- Dwernychuk, L.W., L.U. Young, J.A. Allan and M. Davies. 1997. FINAL REPORT: dioxin/furan trend monitoring program 1997 (sediment/crab/fish). Prepared for Howe Sound Pulp and Paper, Port Mellon, BC and Western Pulp Limited Partnership, Woodfibre Pulp Operations, Squamish, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1997.
- Dwernychuk, L.W., J.A. Allan and E. Dobson. 1998. FINAL REPORT: dioxin/furan trend monitoring program 1998 (sediment/crab/fish). Prepared for Pacifica Papers Inc., Powell River, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1998.
- Dwernychuk, L.W., J.A. Allan and E. Dobson. 1998. FINAL REPORT: dioxin/furan trend monitoring program 1998 (sediment/crab/fish). Prepared for Skeena Cellulose Inc., Prince Rupert, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1998.
- Dwernychuk, L.W., J.A. Allan and E. Dobson. 1998. FINAL REPORT: dioxin/furan trend monitoring program 1998 (crab/fish). Prepared for Fletcher Challenge Canada Ltd., Elk Falls Pulp and Paper, Campbell River, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1998.
- Dwernychuk, L.W., J.A. Allan and E. Dobson. 1998. FINAL REPORT: dioxin/furan trend monitoring program 1998 (Sediment/Crab/Fish). Prepared for Fletcher Challenge Canada Ltd., Crofton Pulp and Paper Division, Crofton, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1998.
- Dwernychuk, L.W. and J.A. Allan. 1998. FINAL REPORT: dioxin/furan trend monitoring program 1998 (sediment/crab/fish). Prepared for Howe Sound Pulp and Paper, Port Mellon, BC and Western Pulp Limited Partnership, Woodfibre Pulp Operations, Squamish, BC. Hatfield Consultants Ltd., West Vancouver, BC. September 1998.
- Eitzer, B.D. and R.A. Hites. 1989. Atmospheric transport and deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ. Sci. Technol. 23: 1396-1401.

- Environment Canada. 1990. Canadian Environmental Protection Act. Priority substances list, assessment report No.1. Polychlorinated dibenzodioxins and polychlorinated dibenzofurans.
- Ericksson, M.D. 1989. PCDFs and related compounds produced from PCB fires -- A review. Chemosphere 19(1-6): 161-165.
- Eriksson, M.D., L. Hardell and H-O. Adami. 1990. Exposure to dioxins as a risk factor for soft tissue sarcoma: A population-based case-control study. Journal of the National Cancer Institute 82: 486-490.
- Frink, C.R., B.L. Shawney, K.P. Kulp and C.G. Fredette. 1989. Polychlorinated biphenyls in Housatinoc River sediments in Massachusetts and Connecticut, U.S.A.: Determination, distribution and transport. Environmental Auditor 1(2): 79-130.
- Giugliano, M., S. Cernuschi and U. Ghezzi. 1989. The emission of dioxins and related compounds from the incineration of municipal solid wastes with high contents of organic chlorine (PVC). Chemosphere 19(1-6):407-411.
- Greim, H. 1990. Toxicological evaluation of emissions from modern municipal waste incinerators. Chemosphere 20(3-4):317-331.
- Harris, W.E. 1990. Dioxins an overview. Tappi Journal (April): 267-269.
- Hashimoto, S., T. Wakimoto and R. Taksukawa. 1990. PCDDs in the sediments accumulated about 8,120 years ago from Japanese coastal areas. Chemosphere 21(7): 825-835.
- Hiraoka, M., N. Takeda, K. Tsumura, T. Fujiwara and S. Okajima. 1989. Control of dioxins from municipal solid waste incinerator. Chemosphere 19(1-6): 323-330.
- Hites, R.A. 1990. Environmental behaviour of chlorinated dioxins and furans. Acc. Chemical Ressearch 23: 194-201.
- Ho, A.K.W. and R.E. Clement. 1990. Chlorinated dioxins/furans in sewage and sludge of municipal water pollution control plants. Chemosphere 20(10-12): 1549-1552.
- Holloway, M. 1990. A great poison: Dioxin helps to elucidate the function of genes/ science and the citizen. Scientific American 263(5):16-20.
- Hunt, G.T. 1989. Measurement of PCDDs and PCDFs in ambient air, JAPCA 39(3):330-331.
- Hunt, G.T. and B.E. Maisel. 1990. Atmospheric PCDDs/PCDFs in wintertime in a Northeastern U.S. urban coastal environment. Chemosphere 20(10-12):1455-1462.
- IOM (Institute of Medicine). 1994. Veterans and Agent Orange Health effects of herbicides used in Vietnam. Washington, D.C.: National Academy Press. 812 p.

וסו

- ISCDRC (15th international symposium on chlorinated dioxins and related compounds) 1995. Organohalogen Compounds Volumes 23 to 26: 1930 p.
- Kitunen, V.H. and M.S. Salkinoja-Salonen. 1990. PCDDs/PCDFs in unbleached pulp. Chemosphere 20(10-12): 1663-1670.
- Manscher, O.H., N.Z. Heidam, J. Vikelsoe, P. Nielsen, P. Blinksbjerg, H. Madsen, L. Pallensen and T.O. Tiernan. 1990. The Danish incinerator dioxin study, Part 1. Chemosphere 20(10-12): 1779-1784.
- Maisel, B.E. and G.T. Hunt. 1990. Background concentrations of PCDDs/PCDFs in ambient air-a comparison of toxic equivalency factor (TEF) models. Chemosphere 20 (7-9): 771-778.
- Miyata, M., K. Takayama, M. Mimura and T. Kashimoto. 1989. Investigation of contamination sources of PCDDs and PCDFs in blue mussel in Osaka Bay in Japan. Chemosphere 19(1-6):517-520.
- Naf, C., D. Broman, R. Ishaq and Y. Zebuhr. 1990. PCDDs and PCDFs in water, sludge and air samples from various levels in a waste water treatment plant with respect to composition changes and total flux. Chemosphere 20(10-12): 1503-1510.
- Naikwadi, K.P and F.W. Karasek. 1989. Prevention of PCDD formation in MSW incinerators by inhibition of catalytic activity of fly ash produced. Chemosphere 19(1-6): 299-304.
- NATO (North Atlantic Treaty Organization). 1988a. International toxicity equivalency factor (I-TEF) method of risk assessment for complex mixtures of dioxins and related compounds. Pilot study on international information exchange on dioxins and related compounds. Committee on the Challenges of Modern Society. #186: 26pp.
- NATO. 1988b. Scientific basis for the development of the International Toxicity Equivalency Factor (I-TEF) method of risk assessment for complex mixtures of dioxins and related compounds. Pilot study on international information exchange on dioxins and related compounds. Committee on the Challenges of Modern Society. #188: 56pp.
- NATO. 1988c. Pilot study on information exchange on dioxins and related compounds, final report. Committee on the Challenges of Modern Society. #177: 51pp.
- NCASI (National Council of the Paper Industry for Air and Stream Improvement). 1987. Dioxin: A critical review of HS distribution, mechanism of action impacts on human health, and the setting of acceptable exposure limits. Technical Bulletin #524.
- NRCC (National Research Council of Canada). 1981. Polychlorinated dibenzo-p-dioxins: criteria for their effects on man and his environment. Associate Committee on Scientific Criteria for Environmental Quality. NRCC #18576: 184 pp.

- NSEPB (National Swedish Environmental Protection Board). 1988. Dioxins: A program for research and action. Information Section (NSEPB), Box 1302, S-171 25 Solna, Sweden.
- Öberg, T. and G. Allhammer. 1989. Chlorinated aromatics from metallurgical industries process factors influencing production and emissions. Chemosphere 19(1-6): 711-716.
- Paasivirta, J. 1988. Organochlorine compounds in the environment. Water Science and Technology 20(2): 119-129.
- Pearson, R.G., D.L. McLaughlin and W.D. McIlveen. 1990. Concentration of PCDD and PCDF in Ontario soils from the vicinity of refuse and sewage incinerators and remote rural and urban locations. Chemosphere 20(10-12): 1543-1548.
- Pohjanvirta, R., L. Tuomisto and J. Toumisto. 1989. The central nervous system may be involved in TCDD toxicity. Toxicology 58:167-174.
- Rappe, C., L-O. Kjeller and R. Anderson. 1989. Analyses of PCDDs and PCDFs in sludge and water samples. Chemosphere 19(1-6): 13-20.
- Rappe, C., R. Andersson, K. Lundström and K. Widerg. 1990. Levels of polychlorinated dioxins and dibenzofurans in commercial detergents and related products. Chemosphere 21(1-2): 43-50.
- Reischl, A., M. Reissinger, M. Thoma and O. Hutzinger. 1989. Uptake and accumulation of PCDD/F in terrestrial plants: basic considerations. Chemosphere 19(1-6): 467-474.
- Rottluff, W., K. Teschke, C. Hertzman, S. Kelly and J. Bert. 1990. Sources of dioxins and furans in British Columbia. Canadian Journal of Public Health 81 (March/April): 94-100.
- Schecter, A. (ed.) 1994. Dioxins and health. New York, Plenum Press. 710 p.
- Servos, M.R. 1988. Fate and bioavailability of polychlorinated dibenzo-p-dioxins in aquatic environments. A thesis presented to the University of Manitoba in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Soil (Pesticide Research Laboratory).
- Servos, M.R. and D.C.G. Muir. 1989. Effects of dissolved organic matter from Canadian Shield Lakes on the bioavailability of 1,3,6,8-tetrachlorodibenzo-p-dioxin to the amphipod crangonyx laurentianus. Environmental Toxicology and Chemistry 8: 144-150.
- Silkworth, J.B., D.S. Cutler, L. Antrim, D. Houston, C. Tumasonis and L.S. Kaminsky. 1989. teratology of 2,3,7,8-tetrachlorodibenzo-p-dioxin in a complex environmental mixture from the Love Canal. Fundamental and Applied Toxicology 13: 1-15.

CIDA 614 Appendix A3.doc

- Skene, S.A., I.C. Dewhurst and M. Greenberg. 1989. Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans: the risks to human health. A review. Human Toxicology 8: 173-203.
- Startin, J.R., M. Rose and C. Offen. 1989. Survey of the background levels of PCDDs and PCDFs in UK vegetation. Chemosphere 19 (1-6): 531-534.
- Steer, P., C. Tashiro, R. Clement, M. Lusis and E. Reiner. 1990. Ambient air sampling of polychlorinated dibenzo-p-dioxins and dibenzofurans in Ontario: Preliminary results. Chemosphere 20 (10-12): 1431-1437.
- Stieglitz, L., G. Zwick, J. Beck, H. Bautz and W. Roth. 1989. Carbonaceous particles in fly ash - a source for the De-Novo-synthesis of organochlorocompounds. Chemosphere 19 (1-6): 283-290.
- Stillman, R. 1990. Dioxin, the invisible monkey. Hazardous Material Management, August: 38-42.
- Tashiro, C., R.E. Clement, B.J. Stocks, L. Radke, W.R. Cofer and P. Ward. 1990. Preliminary report: dioxins and furans in prescribed burns. Chemosphere 20 (10-12): 1533-1536.
- Tashiro, C., R.E. Clement, A. Szakolcai and W.H. Chan. 1989. Comparison of high volume sampling techniques for dioxins and furans in ambient air. Chemosphere 19 (1-6): 1-6.
- Thompson, T.S., R.E. Clement, N. Thornton and J. Luyt. 1990. Formation and emission of PCDDs/PCDFs in the petroleum refining industry. Chemosphere 20 (10-12): 1525-1532.
- Travis, C.C. and H.A. Hattemer-Frey. 1989. Human exposure to dioxin from municipal solid waste incineration. Waste Management 9: 151-156.
- Tysklind, M., G. Söderström, C. Rappe, L-E. Hägerstedt and E. Burström. 1989. PCDD and PCDF emissions from scrap metal melting processes at a steel mill. Chemosphere 19 (1-6): 705-710.
- Umbreit, T.H., E.J. Hesse and M.A. Gallo. 1986. Bioavailability of dioxin in soil from a 2,3,5-T manufacturing site. Science 232: 497-499.
- U.S. EPA (United States Environmental Protection Agency). 1988. Project summary: health assessment document for polychlorinated dibenzo-p-dioxins. EPA/600/S8-84/014F.
- van der Weiden, M.E.J., L.H.J. Craane, E.H.G. Evers, R.M.M. Kooke, K. Olie, W. Seinen and M. van den Berg. 1989. Bioavailability of PCDDs and PCFDs from bottom sediments and some associated biological effects in the carp (*Cyprinus Carpio*). Chemosphere 19 (1-6): 1009-1016.

- Vainio, H., A. Hesso and P. Jäppinen. 1989. Chlorinated dioxins and dibenzofurans in the environment - a hazard to public health? Scandinavian Journal of Environmental Health 15: 377-382.
- Ward, J. 1989. Literature review of the formation of PCDDs and PCDFs at PCB fires. British Columbia Ministry of Environment, Waste Management Branch. Memorandum.
- Webster, T. 1990. Why dioxins and other halogenated aromatic hydrocarbons are bad news. Journal of Pesticide Reform 9 (4): 32-48.
- Whittemore, R.C., L.E. Lafleur, W.J. Gillespie, G.A. Amendola and J. Helms. 1990. U.S. EPA/paper industry co-operative dioxin study: The 104 Mill Study. Chemosphere 20(10-12): 1625-1632.
- Zook, D.R. and C. Rappe. 1994. Environmental sources, distribution, and fate of polychlorinated dibenzodioxins, dibenzofurans, and related organochlorines. p. 79-113.
 In: Dioxins and health A. Schecter (ed.) New York, Plenum Press.

าโ

.